414 research outputs found

    An evaluation of computer-based radiographic methods in estimating dental caries and periodontal diseases

    Get PDF
    Reductions in dental diseases have resulted in a need for more accurate diagnostic and monitoring methods. The purpose of this study was to 1) identify the best diagnostic technique, 2) investigate the main factors which limit its validity and reliabilty and 3) devise methods to improve its reliability and 4) investigate ways of automating its use for general dental practice. From the literature review radiography was identified as the best current method with regard to validity, reliability, production of stable objective data and ease of use. However, irradiation geometry variations between serial films and subjective measurement errors were its principle limitations. Although an accurate semi-automatic caries measuring system exists, it is unsuitable for general practice due to lengthy operator interaction. A series of computer-based experiments were devised to evaluate further the digital subtraction radiography technique (DSR); develop a new method using stored regions of interest (ROI) to reduce subjective measurement errors; investigate the feasibility of completely automatic image analysis. In addition, an in vitro caries experiment was designed to demonstrate the effects of irradiation geometry variation on lesion size and caries scores. The results demonstrated that small variations in irradiation geometry can change radiographic scores. Misalignment of subsequent films beneath a video camera can cause significant errors in the DSR technique. The stored ROI method reduced cement-enamel junction to alveolar crest measurement errors to standard deviation 0.15mm. A fully automatic method for recognising teeth and bone crests was demonstrated. It was concluded that 1) radiography is currently the technique of choice, 2) a new significant methodological error for DSR has been demonstrated, 3) the subjective ROI method produced lower intra- and inter-examiner measurement errors compared to similar methods, 4) routine use of automatic methods may be feasible and should be investigated further and 5) standardised irradiation geometry is essential

    'Calving laws', 'sliding laws' and the stability of tidewater glaciers

    Get PDF
    A new calving criterion is introduced, which predicts calving where the depth of surface crevasses equals ice height above sea level. Crevasse depth is calculated from strain rates, and terminus position and calving rate are therefore functions of ice velocity, strain rate, ice thickness and water depth. We couple the calving criterion with three 'sliding laws', in which velocity is controlled by (1) basal drag, (2) lateral drag and (3) a combination of the two. In model 1, velocities and strain rates are dependent on effective pressure, and hence ice thickness relative to water depth. Imposed thinning can lead to acceleration and terminus retreat, and ice shelves cannot form. In model 2, ice velocity is independent of changes in ice thickness unless accompanied by changes in surface gradient. Velocities are strongly dependent on channel width, and calving margins tend to stabilize at flow-unit widenings. Model 3 exhibits the combined characteristics of the other two models, and suggests that calving glaciers are sensitive to imposed thickness changes if basal drag provides most resistance to flow, but stable if most resistance is from lateral drag. ice shelves can form if reduction of basal drag occurs over a sufficiently long spatial scale. In combination, the new calving criterion and the basal-lateral drag sliding function (model 3) can be used to simulate much of the observed spectrum of behaviour of calving glaciers, and present new opportunities to model ice-sheet response to climate change.</p

    Characterization of 40-Gbit/s pulses generated using a lithium niobate modulator at 1550 nm using frequency resolved optical gating

    Get PDF
    The characteristics of 40-Gbit/s pulses generated by exploiting the nonlinear characteristics of a Mach-Zender Lithium Niobate modulator are presented. A high spectral resolution frequency resolved optical gating apparatus has been developed to allow for the complete characterization of the intensity and phase of these pulses. The use of these measurements to simplify the design and optimization of an 80-Gbit/s pulse source, based on this 40-Gbit/s source followed by a nonlinear fiber compressor and multiplexer, is also demonstrated

    Sensitivity of tidewater glaciers to submarine melting governed by plume locations

    Get PDF
    This work was funded by NERC award NE/P011365/1 (CALISMO: Calving laws for Ice Sheet Models) to PI Benn.The response of tidewater glaciers to ocean warming remains a key uncertainty in sea level rise predictions. Here we use a 3‐D numerical model to examine the response of an idealized tidewater glacier to spatial variations in submarine melt rate. While melting toward the center of the terminus causes only a localized increase in mass loss, melting near the lateral margins triggers increased calving across the width of the glacier, causing the terminus to retreat at several times the width‐averaged melt rate. This occurs because melting near the margins has a greater disruptive impact on the compressive stress arch that transfers resistance from the side walls to the body of the glacier. We suggest that the rate of terminus advance or retreat may thus be governed by the difference between ice velocity and submarine melting in the slow‐flowing zones away from the glacier center.Publisher PDFPeer reviewe

    Dendritic subglacial drainage systems in cold glaciers formed by cut-and-closure processes

    Get PDF
    The routing and storage of meltwater and the configuration of drainage systems in glaciers exert a profound influence on glacier behaviour. However, little is known about the hydrological systems of cold glaciers, which form a significant proportion of the total glacier population in the climate sensitive region of the High Arctic. Using glacio-speleological techniques, we obtained direct access to explore and survey three conduit systems and one moulin within the tongue area of Tellbreen, a small cold-based valley glacier in central Spitsbergen. More than 600 m of conduits were surveyed and mapped in plan, profile and cross-section view to analyse the configuration of the drainage system. The investigations revealed that cold-based glaciers can exhibit a dendritic drainage network with supra-, en- and subglacial components formed most likely by cut-and-closure processes as well as surface-to-bed drainage via moulins. Furthermore, we observed that water is stored within the glacier and released gradually via subglacial conduits during the winter months, forming a large and active icing in the proglacial area. The presence of supra-, en- and subglacial components, the surface-to-bed moulin and the dendritic subglacial drainage network suggest that existing models and understanding of the hydrology of cold glaciers needs to be re-evaluated, mostly concerning the different possible pathways and processes that form the hydrological system

    Optimization of optical data transmitters for 40-Gb/s lightwave systems using frequency resolved optical gating

    Get PDF
    The measurement technique of frequency resolved optical gating has been used to optimize the phase of a 40-GHz train of optical pulses generated using a continuous-wave laser gated with an external modulator. This technique will be vital for optimization of optical transmitters to be used in systems operating at 40 Gb/s and beyond, as standard measurement techniques will not suffice to optimize such high-speed systems

    A cross-validated three-dimensional model of an englacial and subglacial drainage system in a High-Arctic glacier

    Get PDF
    The project was supported by the Danish Geological Society and the Arctic Research and Technology Society.Recent speleological surveys of meltwater drainage systems in cold and polythermal glaciers have documented dynamic englacial and in some cases subglacial conduits formed by the ‘cut-and-closure’ mechanism. Investigations of the spatial distribution of such conduits often require a combination of different methods. Here, we studied the englacial drainage system in the cold glacier Longyearbreen, Svalbard by combining speleological exploration of a 478 m long meltwater conduit with a high-resolution ground penetrating radar (GPR) survey with two different centre-frequencies (25 and 100 MHz). The results yielded a 3-D documentation of the present englacial drainage system. The study shows that the overall form of englacial conduits can be detected from velocity−depth converted GPR data, and that the 3-D model can facilitate a method to pinpoint the reflections in a radargram corresponding with the englacial drainage system, although fine detail cannot be resolved. Visible reflections approximately parallel to the mapped englacial water drainage system likely result from sediment incorporated in the ice or from abandoned parts of the englacial drainage system.Publisher PDFPeer reviewe

    PyTrx : a python-based monoscopic terrestrial photogrammetry toolset for glaciology

    Get PDF
    This work was affiliated with the CRIOS project (Calving Rates and Impact On Sea Level), which was supported by the Conoco Phillips-Lundin Northern Area Program. PH was funded by a NERC Ph.D. studentship (reference number 1396698).Terrestrial time-lapse photogrammetry is a rapidly growing method for deriving measurements from glacial environments because it provides high spatio-temporal resolution records of change. Currently, however, the potential usefulness of time-lapse data is limited by the unavailability of user-friendly photogrammetry toolsets. Such data are used primarily to calculate ice flow velocities or to serve as qualitative records. PyTrx (available at https://github.com/PennyHow/PyTrx) is presented here as a Python-alternative toolset to widen the range of monoscopic photogrammetry (i.e., from a single viewpoint) toolsets on offer to the glaciology community. The toolset holds core photogrammetric functions for template generation, feature-tracking, camea calibration and optimization, image registration, and georectification (using a planar projective transformation model). In addition, PyTrx facilitates areal and line measurements, which can be detected from imagery using either an automated or manual approach. Examples of PyTrx's applications are demonstrated using time-lapse imagery from Kronebreen and Tunabreen, two tidewater glaciers in Svalbard. Products from these applications include ice flow velocities, surface areas of supraglacial lakes and meltwater plumes, and glacier terminus profiles.Publisher PDFPeer reviewe

    Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region

    Get PDF
    This research has been supported by the Swiss National Science Foundation (grant no. IZLCZ2_169979/1) and the Strategic Priority Research Program of Chinese Academy of Sciences (grant no. XDA20100300). Bert Wouters has been supported by NWO VIDI (grant no. 016.Vidi.171.063).Meltwater from Himalayan glaciers sustains the flow of rivers such as the Ganges and Brahmaputra on which over half a billion people depend for day-to-day needs. Upstream areas are likely to be affected substantially by climate change, and changes in the magnitude and timing of meltwater supply are expected to occur in coming decades. About 10 % of the Himalayan glacier population terminates into proglacial lakes, and such lake-terminating glaciers are known to exhibit higher-than-average total mass losses. However, relatively little is known about the mechanisms driving exacerbated ice loss from lake-terminating glaciers in the Himalaya. Here we examine a composite (2017–2019) glacier surface velocity dataset, derived from Sentinel 2 imagery, covering central and eastern Himalayan glaciers larger than 3 km2. We find that centre flow line velocities of lake-terminating glaciers (N = 70; umedian: 18.83 m yr−1; IQR – interquartile range – uncertainty estimate: 18.55–19.06 m yr−1) are on average more than double those of land-terminating glaciers (N = 249; umedian: 8.24 m yr−1; IQR uncertainty estimate: 8.17–8.35 m yr−1) and show substantially more heterogeneity than land-terminating glaciers around glacier termini. We attribute this large heterogeneity to the varying influence of lakes on glacier dynamics, resulting in differential rates of dynamic thinning, which causes about half of the lake-terminating glacier population to accelerate towards the glacier termini. Numerical ice-flow model experiments show that changes in the force balance at the glacier termini are likely to play a key role in accelerating the glacier flow at the front, with variations in basal friction only being of modest importance. The expansion of current glacial lakes and the formation of new meltwater bodies will influence the dynamics of an increasing number of Himalayan glaciers in the future, and these factors should be carefully considered in regional projections.Publisher PDFPeer reviewe
    corecore