64 research outputs found

    A non-traditional approach to cryopreservation by ultra-rapid cooling for human mesenchymal stem cells

    Get PDF
    Cryopreservation is the most common method for long-term cell storage. Successful cryopreservation of cells depends on optimal freezing conditions, freezer storage and a proper thawing technique to minimize the cellular damage that can occur during the cryopreservation process. These factors are especially critical for sensitive stem cells with a consequential and significant impact on viability and functionality. Until now, slow-freezing has been the routine method of cryopreservation but, more recently rapid-cooling techniques have also been proposed. In this study, an ultra-rapid cooling technique [1] was performed for the first time on human mesenchymal stem cells and the effectiveness evaluated in comparison with the conventional slow-freezing procedure. A thin nylon-membrane carrier was used combined with different cryoprotective agents: dimethyl sulfoxide, ethylene glycol and/or trehalose. Various aspects of the low cryoprotective doses and the ultra-rapid cooling procedure of the human mesenchymal stem cells were examined including: the physical properties of the nylon-support, cells encumbrance, viability, proliferation and differentiation. The expression of cell surface markers and apoptosis were also investigated. The study used an ultra-rapid cooling/warming method and showed an overall cell integrity preservation (83-99%), with no significant differences between dimethyl sulfoxide or ethylene glycol treatment (83-87%) and a substantial cell viability of 68% and 51%, respectively. We confirmed a discrepancy also observed by other authors in cell viability and integrity, which implies that caution is necessary when assessing and reporting cell viability data

    Sudden death in lambda light chain AL cardiac amyloidosis: a review of literature and update for clinicians and pathologists

    Get PDF
    Light chain (AL) amyloidosis is the most common type of systemic amyloidosis, affecting around 10 people per million per year. In Europe, approximately 5000 new diagnosis per year are reported. Deposition of amyloid fibrils derived from antibody light chains are key pathogenic agents in AL amyloidosis. They can be deposited in multiple organs but cardiac involvement carries a major risk of mortality. The prognosis is poor in cases associated with multiple myeloma. The average survival is around 1 year. Up to half of all patients with cardiac amyloidosis die suddenly; 75% ofthose deaths are due to heart failure. Ventricular arrhythmia is also associated with cardiac amyloidosis and unexpected death. It is crucial to make a diagnosis and start treatment at an early stage. Recent data suggest that cardiac amyloidosis has become a treatable and curable condition with a combination of agents targeting multiple steps of the amyloid cascade. ICD implantation may not be as effective for the therapy of light chain (AL) cardiac amyloidosis as supposed earlier. In cases of unexpected and sudden death, autopsy may show unknown conditions and is valuable to assess existing risks for family members. Even after careful autopsy, a proportion of sudden deaths, ranging from 2 to 54%, remain unexplained and this broad range of values is likely due to the heterogeneity of autopsy protocols. Post mortem diagnosis of cardiac amyloidosis still represents a challenge for forensic pathologists. Detailed morphologic study of the heart and a complete histopathologic study are mandatory. Immunohistochemistry is essential for amyloid subclassification. A review of existing literature is performed by the authors and a methodological approach in post mortem diagnosis of light chain AL cardiac amyloidosis is proposed. Both macroscopic and microscopic findings are discussed

    Local injection of bone marrow progenitor cells for the treatment of anal sphincter injury: in-vitro expanded versus minimally-manipulated cells

    Get PDF
    Background: Anal incontinence is a disabling condition that adversely affects the quality of life of a large number of patients, mainly with anal sphincter lesions. In a previous experimental work, in-vitro expanded bone marrow (BM)-derived mesenchymal stem cells (MSC) were demonstrated to enhance sphincter healing after injury and primary repair in a rat preclinical model. In the present article we investigated whether unexpanded BM mononuclear cells (MNC) may also be effective. Methods: Thirty-two rats, divided into groups, underwent sphincterotomy and repair (SR) with primary suture of anal sphincters plus intrasphincteric injection of saline (CTR), or of in-vitro expanded MSC, or of minimally manipulated MNC; moreover, the fourth group underwent sham operation. At day 30, histologic, morphometric, in-vitro contractility, and functional analysis were performed. Results: Treatment with both MSC and MNC improved muscle regeneration and increased contractile function of anal sphincters after SR compared with CTR (p < 0.05). No significant difference was observed between the two BM stem cell types used. GFP-positive cells (MSC and MNC) remained in the proximity of the lesion site up to 30 days post injection. Conclusions: In the present study we demonstrated in a preclinical model that minimally manipulated BM-MNC were as effective as in-vitro expanded MSC for the recovery of anal sphincter injury followed by primary sphincter repair. These results may serve as a basis for improving clinical applications of stem cell therapy in human anal incontinence treatment

    The TCR Repertoire Reconstitution in Multiple Sclerosis: Comparing One-Shot and Continuous Immunosuppressive Therapies

    Get PDF
    Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing-remitting multiple sclerosis (RRMS), an autoimmune T-cell-driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the post-treatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naïve and memory CD4+ and CD8+) across 15 RRMS patients before and after two years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRß sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRß repertoire dynamics with respect to clonal expansion, clonal diversity and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multi-dimensional computational immunology to a TCRß dataset of treated MS patients, we show that qualitative changes of TCRß repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis and treatment regimes. Natalizumab (NTZ) and autologous hematopoietic stem cell transplantation (AHSCT) are two successful treatments for relapsing–remitting multiple sclerosis (RRMS), an autoimmune T-cell–driven disorder affecting the central nervous system that is characterized by relapses interspersed with periods of complete or partial recovery. Both RRMS treatments have been documented to impact T-cell subpopulations and the T-cell receptor (TCR) repertoire in terms of clone frequency, but, so far, the link between T-cell naive and memory populations, autoimmunity, and treatment outcome has not yet been established hindering insight into the posttreatment TCR landscape of MS patients. To address this important knowledge gap, we tracked peripheral T-cell subpopulations (naive and memory CD4+ and CD8+) across 15 RRMS patients before and after 2 years of continuous treatment (NTZ) and a single treatment course (AHSCT) by high-throughput TCRβ sequencing. We found that the two MS treatments left treatment-specific multidimensional traces in patient TCRβ repertoire dynamics with respect to clonal expansion, clonal diversity, and repertoire architecture. Comparing MS TCR sequences with published datasets suggested that the majority of public TCRs belonged to virus-associated sequences. In summary, applying multidimensional computational immunology to a TCRβ dataset of treated MS patients, we show that qualitative changes of TCRβ repertoires encode treatment-specific information that may be relevant for future clinical trials monitoring and personalized MS follow-up, diagnosis, and treatment regimens

    Defining the role of mesenchymal stromal cells on the regulation of matrix metalloproteinases in skeletal muscle cells

    Get PDF
    AbstractRecent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration

    Triazole RGD antagonist reverts TGF&#946;1-induced endothelial-to-mesenchymal transition in endothelial precursor cells

    Get PDF
    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment

    Co-Transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats

    Get PDF
    Graft vascularization is a crucial step to obtain stable normoglycemia in pancreatic islet transplantation. Endothelial progenitor cells (EPCs) contribute to neoangiogenesis and to the revascularization process during ischaemic events and play a key role in the response to pancreatic islet injury. In this work we co-transplanted EPCs and islets in the portal vein of chemically-induced diabetic rats to restore islet vascularization and to improve graft survival. Syngenic islets were transplanted, either alone or with EPCs derived from green fluorescent protein (GFP) transgenic rats, into the portal vein of streptozotocin-induced diabetic rats. Blood glucose levels were monitored and intraperitoneal glucose tolerance tests were performed. Real time-PCR was carried out to evaluate the gene expression of angiogenic factors. Diabetic-induced rats showed long-lasting (6 months) normoglycemia upon co-transplantation of syngenic islets and EPCs. After 3–5 days from transplantation, hyperglycaemic levels dropped to normal values and lasted unmodified as long as they were checked. Further, glucose tolerance tests revealed the animals' ability to produce insulin on-demand as indexed by a prompt response in blood glucose clearance. Graft neovascularization was evaluated by immunohistochemistry: for the first time the measure of endothelial thickness revealed a donor-EPC-related neovascularization supporting viable islets up to six months after transplant. Our results highlight the importance of a newly formed viable vascular network together with pancreatic islets to provide de novo adequate supply in order to obtain enduring normoglycemia and prevent diabetes-related long-term health hazards

    Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF.

    Get PDF
    Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies
    • …
    corecore