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ABSTRACT

Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of
injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the
present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix
metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-
culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9
expression and function in the myoblastic cells; these effects were concomitant with the down-
regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility.
In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-
77 satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties
of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their
differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in
these cells, the decrease of a-smooth actin and type-I collagen expression induced by MSC-CM,
suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by
MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the
fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.

© 2014 Published by Elsevier Inc.

Abbreviations: a-sma, a-smooth muscle actin; bFGF, basal fibroblast growth factor; DIC, differential interference contrast; DM,
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Introduction

Skeletal muscle has a remarkable ability to regenerate after
traumatic injury or disease. This is due to the presence of peculiar
stem cells, satellite cells, which lie quiescent under the basal
lamina of the muscle fibre until activated in response to injury,
when they leave their niche and proliferate before differentiating
into myoblasts and fuse into new myofibres [1]. These cells are
characterized by the expression of paired box protein (Pax)-7 and
myogenic differentiation markers (including Myf5, MyoD, and
myogenin) in many muscles [2]. However, the propensity of these
cells to repair skeletal muscle is limited in case of extended
disease (muscular dystrophies and diabetes), exercise-induced
injury [3] or altered use (immobilization, denervation, aging)
[4-7]; in these cases, the amount of extracellular matrix (ECM)
may increase dramatically relative to muscle fibres, resulting in
scarring of the tissue. Muscle fibrosis continues to represent a
challenge for clinicians and researchers since it impairs the
complete muscle recovery, restricts range of motion, and predis-
poses to re-injury. Along this line, much attention has been given
in the recent years to factors and therapeutic strategies that can
improve skeletal muscle healing and regeneration, while reducing
scar tissue formation. Studies conducted by our group and others
have shown that muscle regeneration can be aided by the
administration of growth factors [8-12] and bioactive lipids,
including sphingosine 1-phosphate [13-15]. However, these fac-
tors are short-lived and more effective methods are required.
Emerging evidence suggests that muscle repair can also benefit
from stem cell therapy. To this aim, a variety of cell populations
have been used, among which bone-marrow-derived mesenchy-
mal stromal cells (MSCs) appear to be attractive candidates for
myo-regenerative purposes [16-22]. This because these cells
posses some interesting peculiarities for cell therapy, including
the relatively easy isolation and expansion in culture, stable
phenotype and limited rejection [23]. It is becoming increasingly
clear that the MSCs offer benefits beyond their cell replacement
potential by providing growth factors and cytokines with multiple
effects in the host tissue microenvironment, including neo-
angiogenesis, the modulation of the endogenous repair mechan-
isms and prevention of injured cells from the stress response and
apoptosis [24-27]. In this context, we have previously demon-
strated that MSCs stimulate neonatal cardiomyocyte and skeletal
myoblast proliferation [20,28]; these effects are mainly mediated
by the secretion of a variety of growth factors and cytokines,
including vascular endothelial growth factor (VEGF) [20]. We have
also shown that MSC transplantation contributes to skin regen-
eration by recruiting the local epithelial progenitors to participate
in the repair process in the wound [29]. Of interest, the contribu-
tion to muscle repair by MSCs and their trophic factors may also
involve modulation of fibrosis. Most studies on this field have
focused on the role played by MSCs and other stem cells in
ameliorating ventricular compliance and improving the cardiac
performance after myocardial infarction [19,26,30-35]. However,
the role played by these cells in reducing fibrosis in diseased or
injured skeletal muscle is less known.

With this in mind, the present study was undertaken to further
understand and expand the paracrine activity of MSCs on skeletal
muscle repair/regeneration, focusing on the effects of MSCs
and their conditioned medium on the expression and activity of

matrix metalloproteinases (MMPs), by skeletal C2C12 myoblasts,
satellite cells and skeletal fibroblasts derived from mouse skeletal
muscle tissue. MMPs are a family of enzymes that selectively
digest individual components of ECM; their function is tightly
regulated through the action of specific tissue inhibitors of
metalloproteinases (TIMPs) and is required for muscle healing,
by reducing fibrosis and promoting myogenic cell migration
through the ECM to the site of injury [36-41]. We found that
factors released by MSCs exert potent anti-fibrotic effects via their
ability to regulate the balance of MMP-2 and MMP-9/TIMP-1 and-
2 production by the assayed muscle cells and improve satellite
cell migration and differentiation, thus providing new insights
into the potential role of MSC-cell therapy in muscle regenerative
medicine.

Material and methods
Ethics statement

All animals’ manipulations were carried out according to the
European Community guidelines for animal care (DL 116/92,
application of the European Communities Council Directive of
24 November 1986; 86/609/EEC) and approved by the Committee
for Animal Care and Experimental Use of the University of
Florence. The ethical policy of the University of Florence conforms
to the Guide for the care and use of laboratory animals of the U.S.
National Institutes of Health (NIH Publication No. 85-23, revised
1996; University of Florence assurance No. A5278-01). The pro-
tocols were communicated to local authorities and to Italian
Ministry of the Health; according to the Italian law (Art.7/D.Igs
116/92); such procedure doesn’t require Ministry authorization.
The animals were housed with free access to food and water and
maintained on a 12 h light/dark cycle at 22 °C room temperature
(RT). All efforts were made to minimize the animal suffering
and the number of animals sacrificed. Animals were killed by
decapitation.

Cell culture and treatments

Mouse bone marrow mesenchymal stromal cells (m-MSCs) were
isolated from femura and tibiae of male C2F1 mice, following the
Dobson's procedure [42], expanded in vitro and characterized as
reported previously [20]. In some experiments, these cells were
cultured at 37 °C in a humidified atmosphere of 5% CO,, in C2C12
myoblast differentiation medium (myoblast DM) or in muscle satellite
culture medium or in NIH3T3 cell or primary skeletal fibroblast
culture medium for 24 h and the culture medium (MSC-derived
conditioned medium, MSC-CM) was harvested and used for culturing
C2C12 myoblasts, satellite cells, single muscle fibres, NIH3T3 or
primary skeletal fibroblasts to assess MSC paracrine effects.
Transgenic bone marrow green fluorescent protein (GFP)-labeled
MSCs (GFP-MSCs) were isolated from male GFP transgenic Lewis
rats (RRRC, Missouri, USA), expanded and characterized as
described previously [43]. GFP- MSCs were analyzed for green
fluorescence intensity at different passages in culture as well as
for the expression of particular cell surface molecules using flow
cytometry procedures: CD45-CyChromeTM, CD11b-FITC (in order
to quantify hemopoietic-monocytic contamination), CD90-PE,
CD73-PE, CD44-PE (BD Pharmingen, San Diego, CA, USA).



EXPERIMENTAL CELL RESEARCH 323 (2014)297-313 299

Murine C2C12 skeletal myoblasts obtained from American Type
Culture Collection (ATCC, Manassas, VA, USA), were grown in
Dulbecco's modified Eagle's medium (DMEM) supplemented with
10% fetal bovine serum (FBS), 1% penicillin/streptomycin (Sigma,
Milan, Italy) at 37 °C in a humidified atmosphere of 5% CO- till
reaching 80% confluence. Then, they were shifted in differentia-
tion medium (myoblast DM), containing 2% horse serum (HS,
Sigma) and cultured for 24 h (control). In some experiments the
cells were co-cultured with m-MSCs or rat GFP-MSCs at a 2:1
ratio for 24 h in myoblast DM. In parallel, C2C12 myoblasts were
cultured in a bottom chamber of a polycarbonate transwell
system (Millipore, Billerica, MA, USA) with MSCs put in top
chamber, or exposed to MSC-CM (conditioned medium by MSCs
cultured in myoblast DM for 24 h) in order to assess the paracrine
effects of MSCs.

Single muscle fibres and satellite cells were isolated from Extensor
Digitorum Longus (EDL) muscles carefully removed from anesthetized
(with 50 pg/g zolazepam Tiletamine) young adult male Swiss mice
(25-30 g) essentially as described previously [14]. Briefly, EDL mus-
cles, soon after isolation, were digested in 0.2% collagenase type-I in
DMEM (Sigma) and then transferred to a Petri dish containing serum-
free DMEM, in which single muscle fibres were isolated from the
muscles, by means a gentle mechanical trituration with a Pasteur
pipette. The intact, viable muscle fibres were collected and subse-
quently cultured individually in Matrigel (BD Biosciences, San Jose,
CA, USA) treated 24-well plates, at 37 °C in a humidified atmosphere
of 5% CO,, in satellite cell proliferation medium containing DMEM,
20% FBS, 10% HS, 0.5% chicken embryo extract (Sera Laboratories
International Ltd, Horsted Keynes, UK) plus 1% penicillin/streptomycin
(Sigma) for 48 h. In some experiments after 24 h of culture, the
myofibres were shifted in MSC-CM (conditioned medium by MSCs
cultured in satellite proliferation medium for 24 h) for further 24 h. In
other experiments, after 48 h of culture, the myofibres were removed
and the derived satellite cells were expanded in culture in prolifera-
tion medium (control). In some experiments the cells (P1) were
treated with MSC-CM (conditioned medium by MSCs cultured in
satellite culture medium for 24 h) for 24 h and 48 h (at this time
point, the MSC-CM was changed after 24 h). Satellite cells were
assayed for Pax-7 expression by confocal immunofluorescence ana-
lysis to testify high purity of the culture.

Primary murine skeletal fibroblasts were prepared from EDL skeletal
muscles, after the single myofibres were isolated and cultured in
satellite cell proliferation medium as described above. In particular
the cells sprouting from the 48 h cultured single myofibres, were
detached after reaching 70% of confluence, with 0.05% trypsin—0.03%
ethylenediaminetetraacetic acid (EDTA; Sigma) for 5min at 37 °C,
washed with phosphate buffered saline (PBS), and then seeded in a
culture plate with fresh medium. After 20 min the non-adherent cells
were collected and plated for satellite cell culture preparation, while
the adherent ones (PO) were washed and shifted in DMEM supple-
mented with 20% FBS and 1% penicillin/streptomycin (Sigma) to be
expanded at 37 °C in a humidified atmosphere of 5% CO,. Aliquots of
cells at P1 culture passage were seeded on glass coverslips and
assayed for vimentin and von Willebrand immunophenotype by
confocal microscopy to confirm their stromal nature and to test the
degree of purity of the cell cultures, which usually was 92-98%. To
promote fibroblast-myofibroblast transition the cells were cultured in
low serum (2% FBS) culture medium. In some experiments the
fibroblastic cells (P1) were co-cultured with rat GFP-MSCs at a 1:1
ratio for 24 h in fibroblast low serum culture medium or were

exposed to MSC-CM (conditioned medium by MSCs cultured in
skeletal fibroblast low serum culture medium for 24 h) for 24 h.

Murine NIH3T3 fibroblasts obtained from ATCC were routinely
cultured in DMEM supplemented with 10% FBS, and 1% penicillin/
streptomycin (Sigma) at 37 °C in a humidified atmosphere of 5%
CO,. To promote fibroblast-myofibroblast transition the cells were
cultured in low serum (2% FBS) culture medium. In some
experiments the cells were co-cultured with rat GFP-MSCs at a
1:1 ratio or treated with MSC-CM (conditioned medium by MSCs
cultured in fibroblast low serum culture medium for 24 h) for
24 h in order to assess the paracrine effects of MSCs.

In parallel experiments C2C12 cells and primary murine skeletal
fibroblasts were cultured in the presence of 5 and 10 uM of a
potent inhibitor of MMP-2 and MMP-9, SB-3CT (Sigma), as
previously reported [44].

Confocal immunofluorescence

The different cell types grown on glass coverslips were fixed with
0.5% buffered paraformaldehyde (PFA) for 10 min at RT. After
permeabilization with cold acetone for 3 min, the fixed cells were
blocked with 0.5% bovine serum albumin (BSA; Sigma) and 3%
glycerol in PBS for 20 min and then incubated with the following
primary antibodies: rabbit polyclonal anti-Ki67 (1:100; Santa Cruz
Biotechnology, Santa Cruz, CA, USA); rabbit polyclonal anti-MMP-2
(1:200; Abcam, Cambridge, UK); rabbit polyclonal anti-MMP-9
(1:100; Abcam); rabbit polyclonal anti-TIMP-1 (1:50; Bioss Inc,
Woburn, MA, USA); rabbit polyclonal anti-TIMP-2 (1:20; Abcam);
mouse monoclonal anti-Pax-7 (1:100; Santa Cruz Biotechnology);
rabbit polyclonal anti-MyoD (1:100; Santa Cruz Biotechnology); rat
monoclonal anti-laminin 2 « (1:200; Abcam); goat polyclonal anti-
vimentin (1:40; Sigma); rabbit polyclonal anti- von Willebrand factor
(1:200; Sigma); mouse monoclonal anti- « smooth muscle actin (o-
sma, 1:100; Abcam) and rabbit polyclonal anti-type-I collagen (1:50;
Santa Cruz Biotechnology) overnight at 4 °C. The immunoreactions
were revealed by incubation with specific anti-rabbit, anti-mouse,
anti-rat or anti-goat Alexa Fluor 488- or 568-conjugated IgG (1:200;
Molecular Probes, Eugene, OR, USA) for 1h at RT. In some experi-
ments, counterstaining was performed with propidium iodide (PI,
1:30; Molecular Probes) for 30 s to reveal nuclei. Negative controls
were carried out by replacing the primary antibodies with non-
immune serum; cross-reactivity of the secondary antibodies was
tested in control experiments in which primary antibodies were
omitted. After washing, the coverslips containing the immunolabeled
cells were mounted with an antifade mounting medium (Biomeda
Gel mount, Electron Microscopy Sciences, Foster City, CA, USA) and
observed under a confocal Leica TCS SP5 microscope (Leica Micro-
systems, Mannheim, Germany) equipped with a HeNe/Ar laser source
for fluorescence measurements and with differential interference
contrast (DIC) optics. Observations were performed using a Leica Plan
Apo 63 x [1.43NA oil immersion objective. Series of optical sections
(1024 x 1024 pixels each; pixel size 204.3 nm) 0.4 ym in thickness
were taken through the depth of the cells at intervals of 0.4 pm.
Images were then projected onto a single ‘extended focus’ image.
When needed, a single optical fluorescent section and DIC images
were merged to view the precise distribution of the immunostaining.
Densitometric analyses of the intensity of MMP-2, MMP-9, TIMP-1,
TIMP-2, MyoD, type-I collagen and a-sma fluorescent signals were
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performed on digitized images using Image] software (http://rsbweb.
nih.gov/ij) in 20 regions of interest (ROI) of 100 pm? for each confocal
stack (at least 10). The number of C2C12 cells with Ki67 positive
nuclei was evaluated in 10 random 200 x 200 um square microscopic
fields (60 x ocular) in each cell preparation and expressed as
percentage of the total cell number. The number of Pax-7 positive
satellite cells sprouting from single muscle fibres (at least 10) was
evaluated on 10 random 200 x 200 pm? optical square fields (60 x )
under the confocal Leica TCS SP5 microscope.

Flow cytometry

Flow cytometry analysis was performed to immune-phenotypically
characterize C2C12 cell and mouse MSC populations with the aim to
distinguish the two cell populations, when co-cultured, on the basis
of their cell surface antigen, essentially as described previously [20].
Briefly, mouse MSCs and C2C12 cells recovered from flask by trypsin-
EDTA treatment, were re-suspended in flow cytometry buffer con-
sisting of CellWASH (0.1% sodium azide in PBS; Becton Dickinson, San
Jose, CA, USA) with 2% FBS and incubated with PE- conjugated
monoclonal antibodies (BD Pharmingen) against the myoblastic cell
marker CD34 [45]; 7-aminoactinomycin AAD (7-AAD; BD Pharmin-
gen) was added in order to exclude dead cells from the analysis. Flow
cytometric acquisition was performed by collecting 10* events on a
FACSCanto (Becton Dickinson) instrument and data were analyzed on
DIVA software (Becton Dickinson).

Immunomagnetic cell separation

C2C12 myoblasts and mouse MSCs were separated after 24 h co-
culture using MACS micro beads technology (Miltenyi Biotec,
Bologna, Italy) essentially as reported previously [20]. In particu-
lar, the co-cultured cells were recovered by trypsin-EDTA treat-
ment resuspended in Buffer containing 0.5% BSA and 2 mM EDTA
and incubated with CD34 PE-conjugated antibody (BD Pharmin-
gen) following manufacturer's instructions. Cells were then incu-
bated with anti-PE MicroBeads and separated on MS MACS
column following manufacturer's instructions (Miltenyi Biotec).
The CD34 positive (C2C12 cells) cell fraction was then re-analyzed
by flow cytometry to assess cell viability and purity and processed
for Western blotting analysis. C2C12 cells in single culture were
subjected to the same treatments of those in co-culture and used
as control (CD34" C2C12 single culture).

Western blotting

Cells were resuspended in appropriate volume of cold Cell Extrac-
tion Buffer (10 mM Tris/HCl, pH 7.4, 100 mM NaCl, 1 mM EDTA,
1 mM EGTA, 1 mM NaF, 20 mM NasP,07, 2 mM Na3VOy, 1% Triton
X-100, 10% glycerol, 0.1% sodium dodecyl sulphate (SDS), 0.5%
deoxycholate; Invitrogen Life Technologies, Grand Island, NY, USA)
supplemented with 50 ul/ml Protease Inhibitor Cocktail (Sigma)
and 1 mM Phenylmethanesulfonyl fluoride, PMSF (Sigma). Upon
centrifugation at 13.000g for 10 min at 4 °C, the supernatants were
collected and the total protein content was quantified by Bio-Rad
protein assay (Bio-Rad Laboratories S.r.l, Milan, Italy) following the
manufacturer's instructions. Forty micrograms of total proteins
were electrophoresed on NuPAGE® 4-12% Bis-Tris Gel (Invitrogen;
200V, 40 min) and blotted onto polyvinylidene difluoride (PVDF)
membranes (Invitrogen; 30V, 1 h). The membranes were blocked

with Blocking Solution included in the Western Breeze®Chromo-
genic Western Blot Immunodetection Kit (Invitrogen) for 30 min at
RT on rotary shaker and incubated overnight at 4 °C with rabbit
polyclonal anti-MMP-2 (1:2000; Abcam), rabbit polyclonal anti-
MMP-9 (1:1000; Abcam), mouse monoclonal anti-a-sma (1:1000;
Abcam) and rabbit polyclonal anti o-tubulin (1:1000; Millipore)
antibodies, assuming a-tubulin as control invariant protein. Immu-
nodetection was performed as described in the Western Bree-
ze®Chromogenic Immunodetection protocol (Invitrogen). Densi-
tometric analysis of the bands was performed using Image] soft-
ware (http://rsbweb.nih.gov/ij) and the values normalized to
a-tubulin.

Gelatinase assay

The MMP activity in myoblasts and fibroblastic cells was evalu-
ated using EnzChek® Gelatinase/Collagenase Assay Kit (Molecu-
lar Probes) which provides a highly quenched, fluorescein-labeled
gelatin (DQ™ gelatin). Upon proteolytic digestion, the green
fluorescence of the gelatin, is revealed and can be used to
measure enzymatic activity. In particular, the wells of a 96-well
microplate reader were coated with 25 pg/ml of DQ™ gelatin
following the manufacturer's instructions; C2C12 or fibroblastic
cells in different experimental culture conditions or the sole MSC-
CM were added to the coated wells and incubated at 37 °C in a
humidified atmosphere of 5% CO,, for 24 h before reading the
fluorescent intensity by using a multi-well scanning spectro-
photometer (ELISA reader; Amersham, Pharmacia Biotech, Cam-
bridge, UK) at a wavelength of 515 nm. In parallel experiments,
C2C12 cells were seeded onto glass coverslips previously coated
with fluorescein-conjugated DQ™ gelatin (25 pg/ml) cultured for
24 h in DM or MSC-CM and then observed under a confocal Leica
TCS SP5 microscope (Leica Microsystems).

In vitro cell migration assay

Cell migration assay was performed according to methods previously
described [46], with minor modifications. Briefly, C2C12 cells (3 x 10°)
were cultured on glass coverslips coated with type-I collagen (Sigma)
until 70% confluent in a complete medium. Cells were then shifted in
DM or in CM-MSC in the presence or absence of SB-3CT (10 uM,
Sigma), and cultured for 24 h before an artificial wound was created
in the monolayer using a sterile plastic pipette tip. A perpendicular
mark was placed across each scratch on the external surface of the
glass coverslips to allow quantitative analysis. Repopulation of the
wounded area was observed under phase contrast microscopy at 0
and 24 h after scraping. The average distance migrated by the cells
was evaluated as the difference of the cell front relative to the 0 h
time point, using ImageJ software (http://rsbweb.nih.gov/ij). After the
analysis of cell migrating, the cells were fixed in 0.5% PFA, stained
with Alexa Fluor 488 labelled-phalloidin (1:40 for 20 min at RT;
Molecular Probes) to reveal actin filaments and observed by confocal
Leica microscopy.

Time-lapse videomicroscopy

Single muscle fibres and the derived satellite cells were analyzed
for 24 h by time-lapse videomicroscopy (1 frame/5 min, exposure
time 0.5 s) using an inverted phase-contrast (Nikon, Tokyo, Japan)
equipped with a 10 x objective and a cooled video camera
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Fig. 1 — Expression of MMP-2 and MMP-9 and their inhibitors (TIMP-1 and TIMP-2) in C2C12 myoblasts in single and co-culture
with MSCs. (A), (B) Representative immunofluorescence confocal images of C2C12 cells in (A) single (control) and (B) co-culture
with GFP-MSCs (red pseudocolor) for 24 h, immunostained with antibodies against MMP-2 (green), MMP-9 (cyan), TIMP-1 (green)
and TIMP-2 (green). (C) Densitometric analyses of the intensity of the specific fluorescence signals performed on digitized images.
(D) Flow cytometric analysis of CD34 antigen expression in C2C12 myoblasts in co-culture, after immunomagnetical separation
from m-MSCs, using anti-CD34 antibody. Purity of C2C12 cell fraction after separation (C2C12 CD34" co-culture) was 98%. Viability,
measured as 7-AAD negative cells, was 95%. (E) Western blotting analysis of MMP-2 and MMP-9 expression on CD34" C2C12 cells in
single (C2C12 CD34" single culture) and co-culture (C2C12 CD34" co-culture). The densitometric analysis of the bands normalized
to a-tubulin is reported in the histogram. Data are representative of at least three independent experiments with similar results.
Significance of differences in (C) and (E) was evaluated by Student's t test: * p<0.05 vs C2C12 control, *p <0.05 vs C2C12 CD34"
single culture; °p <0.05 vs MMP-2.
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equipped with a motorized filter wheel and its dedicated digital
recording software (Chroma CX3, DTA, Cascina, Italy).

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.yexcr.2014.03.003.

Myotubes formation

Myotubes were also observed and their number evaluated after
48 h satellite cell culture in proliferation medium (control) or in
MSC-CM, in 10 random 691.200 pm? optical square fields (20 x
ocular) under an inverted phase contrast microscope Nikon
Diaphot 300 (Nikon) in each cell preparation (at least 10).

Statistical analysis

Data were reported as mean+s.e.m. Statistical significance was
determined by one-way ANOVA and Newman-Keuls multiple
comparison test or Student's t test (comparison between two
populations). A p value < 0.05 was considered significant. Calcula-
tions were performed using GraphPad Prism software (GraphPad,
San Diego, CA, USA).

Results

MSCs up-regulate MMP expression and activity in cultured
myoblastic cells

To investigate the interactions between MSCs and skeletal myo-
blasts, we first co-cultured C2C12 cells with MSCs isolated from
bone marrow of green fluorescent protein (GFP) transgenic Lewis
rats (GFP-MSCs) or C2F1 mice (m-MSCs) for 24 h. As shown in Fig. 1,
C2C12 cells cultured alone expressed relatively high levels of MMP-9
and much lower levels of MMP-2, in agreement with our previous
observations [31]. The co-presence of GFP-MSCs or m-MSCs in the
culture, beside stimulating myoblast proliferation (81.2+6% and
61.1+5% of the myoblast nuclei resulted Ki67 positive in the co-
culture and single culture, respectively; Student's Test, p<0.05)
enhanced MMP-9 and MMP-2 production and down-regulated the
expression of their inhibitors TIMP-1 and -2, as judged by confocal

immunofluorescence (Fig. 1A-C) and Western blotting analysis
performed in C2C12 cells immunomagnetically separated from m-
MSCs using antibodies against specific myoblastic cell markers
(CD34) (Fig. 1D and E). In particular, both MMP-2 and MMP-9 had
similar subcellular distribution in the myoblastic cells and appeared
linearly organized along the cytoskeletal filaments (Fig. 1A and B).
Their inhibitors, TIMP-1 and TIMP-2, appeared evenly distributed
within the cytoplasm (Fig. 1A and B). To monitor MSC-mediated
paracrine effects, C2C12 cells were co-cultured with either GFP-
MSCs or m-MSCs using a transwell system or treated with MSC-
conditioned medium (MSC-CM) for 24 h. It was found that the
expression levels of both MMP-2 and MMP-9 were increased by
approximately two-folds after C2C12 cells were exposed to factors
secreted by MSCs (Fig. 2A and B). In contrast, the expression of
TIMP-1 and -2 were reduced (approximately by three and two-folds,
respectively) in C2C12 cells treated with MSC-CM (Fig. 2B). With
DQ™ gelatin degradation assay, we also demonstrated that gelati-
nase (MMP-2 and MMP-9) activities of C2C12 cells were increased
after exposure to MSC-CM (Fig. 2C and D), indicating that these cells
synthesized functional MMPs. These data correlated with the
increased cell motility observed in MSC-CM-treated cells as com-
pared with control cells. In fact, utilizing a scrape migration assay,
we found that the addition of MSC-CM significantly increased
myoblast migration distance (Fig. 3A-D,G). Interestingly, the incuba-
tion of the cells with SB-3CT, a potent MMP-2/9 inhibitor (Fig. 2C),
inhibited the effects of the MSC-CM on cell motility, reducing the
migration distance into the artificial wound (Fig. 3A-D,G). It is well
known that a finely tuned balance between actin filament poly-
merization/depolymerization is required for cell migration [47].
Accordingly, MSC-CM treated cells, compared to the untreated
controls, showed a more elongated shape along with a better
organized cytoskeleton with robust stress fibers and expressed
raft-like structures (ie. microspikes and lamellipodia) at the
migratory edge (Fig. 3E and F), suggestive of increased cell migra-
tion. By contrast, the cells incubated with SB-3CT (10 pM), revealed a
round-shaped morphology and reduced cytoskeletal assembly
(Fig. 3E and F).

Altogether these data suggested that MSCs were able to
regulate MMP expression and function in skeletal myoblasts
through the release of paracrine factors.

Fig. 2 - MMP-2 and MMP-9 expression/activity and TIMP-1 and TIMP-2 expression in C2C12 myoblasts exposed to factors secreted
by MSCs. C2C12 myoblasts were cultured alone (C2C12 control) or exposed to MSC-conditioned medium (C2C12+MSC-CM) for 24 h
in the presence or absence of a potent MMP2/9 inhibitor, SB-3CT (SB, 5 and 10 uM). (A) Western blotting analysis of MMP-2 and
MMP-9 expression. The densitometric analysis of the bands normalized to a-tubulin is reported in the histogram. (B)
Representative immunofluorescence confocal images of C2C12 cells in the indicated experimental conditions, immunostained
with antibodies against MMP-2 (green), MMP-9 (cyan), TIMP-1 (green) and TIMP-2 (green). In some images, nuclei are
counterstained in red with propidium iodide (PI). Densitometric analyses of the intensity of the fluorescence signals of each
specific marker performed on digitized images, are reported in the histograms. (C), (D) Gelatinase assay. C2C12 myoblasts were
seeded on a fluorescein-labeled gelatin substrate (DQ™ gelatin) and cultured in the indicated experimental conditions. (C)
Spectrophotometrical quantification of the DQ™ gelatin fluorescence intensity revealed after proteolytic digestion of the gelatin
by MMP gelatinases. MSC-CM refers to the sole MSC-CM added to the DQ™ gelatin substrate. (D) C2C12 cells seeded onto DQ™
gelatin coated glass coverslips, cultured as indicated and observed under a confocal fluorescent microscopy. The micrographs in
grey scale are representative DIC images of C2C12 cells in the indicated experimental conditions. In green, the gelatin fluorescence
intensity. Data are representative of at least three independent experiments with similar results. Significance of differences in (A)
and (B) was evaluated by Student's t test: “p<0.05 vs C2C12 control; °p<0.05 vs MMP-2; significance of differences in (C) was
evaluated by one-way ANOVA and Newman-Keuls multiple comparison test: #p <0.05 vs MSC-CM; 3p<0.05 vs C2C12 control;
**p<0.05 vs C2C12+MSC-CM.
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MSCs up-regulate MMP expression and promote myogenic
differentiation in satellite cells

To further verify and extend the effects of MSCs on MMPs in
myoblastic cells, we next evaluated whether MSC-CM influenced
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the expression of MMP-2 and MMP-9 in satellite cells isolated from
single muscle fibres. By time-lapse videomicroscopy it was found
that small mononucleated cells moved under the basal lamina of
the muscle fibre and reached the surface of the host myofibre
where they rapidly proliferated (Fig. 4A and B; Supplemental files
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1,2). These cells expressed Pax-7 (Fig. 5), which is considered a cell and MMP-9 were up-regulated in Pax-7" satellite cells (Fig. 5A and
marker of satellite cells that are highly myogenic and self-renewable B), whereas the levels of TIMP-1 and TIMP-2 were down-regulated
[2]. After the exposure to factors contained in the MSC-CM, MMP-2 (Fig. 5B). In these experimental conditions, these cells also showed
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Fig. 3 — Migration assay. (A)-(D) C2C2 cells were cultured on glass coverslips coated with type-I collagen in differentiation medium
(DM, control) or treated with MSC-CM (C2C12+MSC-CM) in the presence (+) or absence (—) of a specific MMP2/9 inhibitor, SB-3CT
(10 pM), for 24 h after having removed the cells from an half of the coverslip using plastic pipette tip to allow the cells to migrate
into the scrape area. The blu line denotes the edge of the scrape at time 0 (T0), and the red line denotes migration front after 24 h.
Migration distance was calculated as the difference between red and blue lines in each field of view. (E) and (F) In some
experiments, the cells after migration, were fixed and stained with Alexa488-conjugated phalloidin to visualize actin filaments
(F-actin). a-c, magnification of ROI indicated in (E) and (F), showing features of migrating [actin microspikes (a,b) and lamellipodia
(a)] and non migrating cells (c). (G). Quantitative analysis of cell migration. The values are the media of three independent
experiments. Significance of differences was evaluated by Student's t test: “*p <0.05 vs C2C12 control; “p<0.05 vs -SB-3CT.
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Fig. 4 - Satellite cell activation in skeletal muscle fibres. (A), (B) Time-lapse videomicroscopy analysis of skeletal muscle fibres isolated
from EDL muscle cultured in satellite cells growth medium (1 frame/5 min). Arrows indicate migration of a satellite cell under the
basal lamina of the muscle fibre, whereas arrowheads (B) point to satellite cell proliferation at the surface of the host myofibre.

increased motility, proliferation and differentiation potentials. This
mostly on the basis of the following data showing that after the
addition of MSC-CM: (i) a higher number of Pax-7" satellite cells
sprouted from the single fibres (Fig. 6A); (ii) there was an increased
fragmentation of the basal lamina around myofibres, as judged by
laminin 2o immunostaining (Fig. 6A), and; (iii) the sprouting
myoblasts exhibited increased levels of MyoD, a marker of satellite
cell activation [2] (Fig. 6A) associated with a higher tendency to fuse
into multinucleated myotubes (Fig. 6B). These data taken together
suggested that satellite cell migration and differentiation potentials
could be promoted by MSC-CM, possibly by regulating MMP
activity.

MSCs up-regulate MMP expression in skeletal fibroblasts
and inhibit fibroblast-myofibroblast transition

Beside myoblasts, skeletal fibroblasts can also regulate ECM
remodelling. Several lines of evidence suggest that this role is
accomplished through two major mechanisms: secretion of ECM-
degrading enzymes and differentiation into myofibroblasts, pro-
ducing collagen and others ECM proteins [48]. On this back-
ground, we investigated whether skeletal fibroblasts could be a
target of MSC-CM. Fibroblasts were isolated from mouse skeletal
muscle and characterized at the first passage using morphological
(flat and spindle-shaped with several projecting processes) and
immunocytochemical (vimentin-positive and von Willebrand
factor-negative) criteria (Fig. 7A). In co-culture with GFP-MSCs,
and after exposure to MSC-CM, skeletal fibroblasts and NIH3T3
fibroblastic cell line (data not shown) showed enhanced expres-
sion and activity of MMP-2 and MMP-9 (Fig. 7B-E), concomitant
with reduced levels of TIMP-1 and TIMP-2 (Fig. 7C and D). This
effect was associated with a decrease in a-smooth muscle actin
(a-sma) (Fig. 7B and C), the most reliable marker of myofibro-
blasts, and type-I collagen expression in the cells cultured with
GFP-MSCs or treated with MSC-CM (Fig. 8A and B), indicating that
the anti-fibrotic potential of MSCs on skeletal muscle fibroblasts

could be related not only to the stimulation of MMPs functions
but also to the inhibition of their ability to undergo fibroblast-
myofibroblast transition and accumulate collagen. Of interest, we
also demonstrated that the pre-treatment with SB-3CT prevented
the increase in MMP activity induced by MSC-CM (Fig. 7E) and
inhibited MSC-CM decreased o-sma and type-I collagen expres-
sion (Fig. 8A and B), suggesting that the preventive effects of
paracrine factors from MSCs on fibroblast differentiation could be,
at least in part, associated with MMP-pathway.

Discussion

The ECM provides the structural support of tissues and organs by
serving as a scaffold for cells and determines their mechanical
properties. Its homeostasis is dependent on a fine coordination
between a family of proteolytic enzymes that selectively digest
individual components of ECM, MMPs, and their specific tissue
inhibitors (TIMPs). Over 25 members of the MMP family and 4
TIMPs family have been identified so far [41]. These molecules are
constitutively expressed by a wide range of cell types from
connective tissues, inflammatory and stem cells and are regulated
by a number of growth factors, cytokines and chemokines. MMP/
TIMP balance plays pivotal roles in normal functioning tissues
during growth, development and regeneration. Previous studies
have, in fact, demonstrated that dismantling the ECM by MMP
gelatinases, MMP-2 and MMP-9, is required for satellite cell
activation and efficient skeletal muscle regeneration [1,38,49-
52]. Moreover, their inhibition negatively impact skeletal muscle
healing [52]. MMP expression and function may also be associated
with aberrant tissue repair response and disease progression in
many tissues, including skeletal muscle [37,53]. In particular,
increased MMP-2 and MMP-9 activity has been found in severe
muscular dystrophies, inflammatory myopathies, disuse atrophy,
aging and injured muscle and is associated with the chronic
persistence of inflammatory infiltrate, continuous cycles of myo-
fibre degeneration and regeneration and massive proliferation
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of fibroblasts [5,54]. In these conditions, the formation of a
permanent fibrotic tissue surrounding the myofibres leads to a
significant impairment of the muscle compliance and function
and increases the susceptibility to re-injury. Of interest, the
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introduction of exogenous MMP-1 into the previously formed
scar tissue of injured mouse gastrocnemius muscle results in a
significant reduction of collagen content and improvement in the
number of regenerating myofibres [55,56]. These data suggest
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that increased MMP activity into the fibrotic tissue may be able to
rescue the pathological muscle, making the tissue microenviron-
ment more hospitable and conductive to cell regeneration. The
mechanisms behind these effects are related to the fact that these

enzymes disrupt ECM and the components of myofibre basement
membrane that hinder myoblasts to reach the site of injury and
differentiate and fuse into multinucleated fibers during muscle
repair/regeneration. Along this line, we have shown in the present
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Fig. 6 — Activation and differentiation of satellite cells from single skeletal muscle fibres exposed to factors secreted by MSCs. (A)
Upper panels: representative superimposed DIC and confocal fluorescence images of satellite cells (SCs) sprouting from a single
skeletal muscle fibre cultured in satellite proliferation medium (control) or exposed to MSC-conditioned medium (MSC-CM) for
24 h, fixed and immunostained with antibodies against Pax-7 (green). Lower panels: representative confocal fluorescence images
of SCs sprouting from a single skeletal muscle fibre cultured as reported above, fixed and immunostained with antibodies against
laminin 2« (green) and MyoD (red). Arrows indicate the nuclear localization of MyoD. Quantitative analysis of the number of Pax-
7" cells in the different experimental conditions and the densitometric analyses of the intensity of MyoD fluorescence signal,
performed on digitized images are reported in the histograms. (B) Phase contrast microscopy analysis of myotube formation after
48 h culture of SCs in the indicated experimental conditions; the quantitative analysis of the myotube number is reported in the
corresponding histogram. Data are representative of at least three independent experiments with similar results. Significance of
differences was evaluated by Student's t test: “p <0.05 vs control in (A) and vs SCs control in (B).

Fig. 5 - MMP-2 and MMP-9 and TIMP-1 and TIMP-2 expression in Pax-7 positive satellite cells exposed to factors secreted by MSCs.
Satellite cells (SCs) isolated from single skeletal muscle fibre, at the first passage (P1), were cultured in growth medium (SCs
control) or exposed to MSC-conditioned medium (SCs--MSC-CM) for 24 h. (A) Western blotting analysis of MMP-2 and MMP-9
expression. The densitometric analysis of the bands normalized to a-tubulin, is reported in the histogram. (B) Representative
immunofluorescence confocal images of SCs in the indicated experimental conditions, immunostained with antibodies against
Pax-7(red), MMP-2 (green), MMP-9 (cyan), TIMP-1 (green) and TIMP-2 (green). Densitometric analyses of the intensity of the
fluorescence signals of MMP-2, MMP-9, TIMP-1 and TIMP-2 performed on digitized images, are reported in the histograms. Data
are representative of at least three independent experiments with similar results. Significance of differences was evaluated by

Student's t test: *p <0.05 vs SCs control; °p <0.05 vs MMP-2.
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study that MSCs, which are emerging as good candidates for cell-
based therapy to improve skeletal muscle repair/regeneration
[17-19], secrete paracrine factors capable of up-regulating MMPs
in both skeletal muscle specific stem cells, myoblasts and satellite
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cells, and skeletal fibroblasts, thus providing clues for additional
therapeutic options to counteract fibrosis in diseased skeletal
muscle. Indeed, when compared to controls, C2C12 myoblasts and
satellite cells co-cultured with MSCs or exposed to MSC-CM
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exhibited increased MMP-2 and MMP-9 expression and activity
associated with a down-regulation of MMP inhibitors, TIMP-1 and
TIMP-2. These data are consistent with our previous reports
showing that C2C12 myoblasts and myofibre-associated satellite
cells express MMP-2 and MMP-9 [14,31] and that MSCs produce and
release a wide variety of cytokines and growth factors, including
interleukin (IL)-1, basal fibroblast growth factor (bFGF) and VEGF
[20,28], which are considered highly potent inducers of MMP
expression in many cell types [57]. In particular, it has been recently
demonstrated that injection of VEGF into wounded skin increases
neo-epidermal thickness and enhances re-epithelialization through
the up-regulation of MMP-2 and MMP-9 expression [58] and
preliminary data from our laboratory have indicated that the
selective pharmacological VEGFR inhibition, using KRN633, mark-
edly attenuates the expression of MMP-2 in C2C12 cells [personal
communication].

We also showed that MSC-CM promoted myoblast and satellite
cell motility. In particular, using a scrape migratory assay, we
demonstrated that MSC-CM-mediated myoblast motility was largely
prevented by the incubation with a potent MMP inhibitor, SB-3CT.
The inhibition of migration correlated with changes in cell mor-
phology and in the cytoskeletal organization. Indeed, the typical
actin motile structures, namely microspikes and ruffles/lamellipodia,
observed at the migratory front were largely absent in the myoblasts
pretreated with the MMP inhibitor prior the exposure to MSC-CM.
In view of a previous study showing that MMP-2 physical interact
with integrin and the actin cytoskeleton in glial cells [59], it is
possible to suggest that the increased MMP expression observed in
myoblasts in response to paracrine factors from MSCs may influence
myoblast cells migration not only through the increased pericellular
proteolysis but also through the stimulation of functional interac-
tions with the actin motile structures. This could also explain some
of our data concerning the prevalent cytoskeletal distribution of
MMP-2 and MMP-9 in the myoblastic C2C12 cells. On the other
hand, the intracellular activity of MMPs is in line with the newly
emerging evidence that these proteases, in particular MMP-2, beside
their role as secreted proteins on ECM, can also rapidly act on
several specific substrates inside the cells [60]. Moreover, the
nuclear localization of MMPs in different cell types involves a novel
biological action of these MMPs, consisting in a direct involvement
in the regulation of gene transcription and expression [46,60-62].

Another interesting observation of the present study was the
ability of MSC-CM to negatively interfere with myofibroblast
differentiation of skeletal fibroblasts in primary cultures. Since
myofibroblasts are believed to be the major contributors to tissue
scarring, such findings provide further evidence for an anti-fibrotic
effect of the conditioned media harvested from MSCs. Indeed, we
have found that MSC-CM markedly attenuated the tendency of
skeletal fibroblast to produce a-sma and type-I collagen. These data
are consistent with those conducted in another study where
vascular smooth muscle cells transplanted into the infarcted rat
heart decreased myofibroblast activation and the subsequent mala-
daptive structural remodeling through paracrine mechanisms [63].
Interestingly, the inhibition of fibroblast-myofibroblast transition
observed after the exposure to MSC-CM was significantly impaired
when the cells were pre-treated with SB-3CT, suggesting the
intriguing hypothesis that the cultured medium could suppress this
phenomenon through putative MMP-dependent mechanisms. In
support of this hypothesis, there are recent data that suppression of
MMP-2 with TIMP-1 blocks hepatocyte growth factor (HGF)-
decrease, a-sma and type-III collagen expression in transforming
growth factor (TGF)-p-treated Achilles tendon fibroblasts [64]. The
mechanisms whereby MMPs negatively influence myofibroblast
activation and fibrosis are completely unknown. Efforts will con-
tinue in our laboratory to address this point and, in particular, to
reveal any potential involvement of MMPs in the synthesis and
secretion of profibrotic factors, such as TGF-p by the skeletal
fibroblasts.

On the basis of the results of the present study it would be
reasonable to hypothesize that the beneficial effects of MSC therapy
for skeletal muscle repair/regeneration may also involve the ability
of the engrafted cells to stimulate ECM remodeling and myoblast
migration, as well as to attenuate myofibroblast formation and the
subsequent excessive collagen production. In so doing, the engrafted
cells and their released factors modify the local microenvironment
and disrupt the mechanical barriers against the recruitment of the
endogenous stem cells at the sites of muscle injury.To the best of our
knowledge, this is the first experimental study to report the
potential of MSC-derived paracrine factors to assist muscle remodel-
ling through the upregulation of MMPs in different cell types.

We believe that the unique value of MSC therapy over the
administration into the damaged muscle of single molecules, such

Fig. 7 - MMP-2 and MMP-9 expression/activity and TIMP-1 and TIMP-2 expression in skeletal muscle fibroblasts. Primary skeletal
muscle fibroblasts (SkmFs) were cultured for 24 h in single culture in low serum culture medium (SkmFs control), co-coltured
with GFP-MSCs (SkmFs+GFP-MSCs) or exposed to factors secreted by MSCs in the absence (SkmFs-+MSC-CM) or presence of 5 or
10 1M SB-3CT (SB). (A) Representative superimposed DIC and confocal immunofluorescence images of SkmFs immunostained with
antibodies against vimentin (green) and von Willebrand factor (green). Nuclei are counterstained in red with propidium iodide
(PI). (B) Western blotting analysis of MMP-2 and MMP-9 expression in SkmFs in the indicated experimental conditions. The
densitometric analysis of the bands normalized to a-tubulin is reported in the histogram. Data are representative of at least three
independent experiments with similar results. (C) Confocal immunofluorescence analysis of MMP-2 (green), MMP-9 (cyan), TIMP-1
(green) and TIMP-2 (green) expression in the indicated experimental conditions; GFP fluorescent signal is shown in red
pseudocolor. (D) Densitometric analyses of the intensity of the fluorescence signals of each specific marker performed on digitized
images. (E) Gelatinase assay. SkmFs were seeded on a fluorescein-labeled gelatin substrate (DQ™ gelatin) and cultured in the
indicated experimental conditions. Spectrophotometrical quantification of the DQ™ gelatin fluorescence intensity revealed after
proteolytic digestion of the gelatin by MMP gelatinases. MSC-CM refers to the sole MSC-CM added to the DQ™'gelatin substrate.
Significance of differences in B was evaluated by Student's t test: “p <0.05 vs SkmFs control; in (D), it was evaluated by one-way
ANOVA and Newman-Keuls multiple comparison test: *p <0.05 vs SkmFs control, °p <0.05 vs SkmFs+GFP-MSCs, in E it was
evaluated by one-way ANOVA and Newman-Keuls multiple comparison test: #p <0.05 vs MSC-CM, ¥p <0.05 vs SkmFs control;

**p <0.05 vs SkmFs-+MSC-CM.
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Fig. 8 - Fibroblast-myofibroblast transition after exposure to MSC-conditioned medium and inhibition of MMP activity. Primary
skeletal muscle fibroblasts (SkmFs) were cultured for 24 h in single culture in low serum culture medium (SkmFs control), co-
coltured with GFP-MSCs (SkmFs-+GFP-MSCs) or exposed to factors secreted by MSCs in the absence (SkmFs+MSC-CM) or presence
of 5 or 10 pM SB-3CT (SB). (A) Western blotting analysis of a-sma expression in SkmFs in the indicated experimental conditions.
The densitometric analysis of the bands normalized to a-tubulin is reported in the histogram. Data are representative of at least
three independent experiments with similar results. (B) Confocal immunofluorescence analysis of x-sma and type-I collagen
expression (green) in the indicated experimental conditions; GFP fluorescent signal is shown in red pseudocolor. Densitometric
analyses of the intensity of the fluorescence signals of each specific marker performed on digitized images are reported in the
histograms. Significance of differences was evaluated by one-way ANOVA and Newman-Keuls multiple comparison test. In (A)
*p <0.05 vs SkmFs control, °p <0.05 vs SkmFs+MSC-CM; in (B) #*p <0.05 vs SkmFs control, ¥p <0.05 vs SkmFs-+GFP-MSCs, **p <0.01
vs SkmFs+MSC-CM.
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as MMPs and/or their inhibitors or anti-fibrotic factors, which
suffer of rapid clearance and relatively short half-life [7], may
reside in the possibility of the engrafted cells to release constant
levels of paracrine signals that can act synergistically to stimulate
the release of MMPs in the contest of the regenerating tissue to
achieve more sustained therapeutic effects.

In conclusion, our data contribute to extend the therapeutic
potential of MSCs for the treatment of diseased or injured skeletal
muscle and open new prospective for understanding the mechan-
isms of action of MSCs in muscle healing. Our findings provide
circumstantial evidence that these cells exert potent anti-fibrotic
effects at least in part through the regulation of MMP/TIMP
expression on different muscle cells and can be exploited to
augment the beneficial effects of cell transplantation and improve
and sustain their engraftment into the damaged muscle.
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