23 research outputs found

    The Cytokinin-Activating LOG-Family Proteins Are Not Lysine Decarboxylases

    Get PDF
    © 2018 Elsevier Ltd A conserved PGGxGTxxE motif misleads the cytokinin (CK) converting LONELY GUY enzymes to be wrongly annotated as lysine decarboxylases (LDCs). However, so far PGGxGTxxE motif-containing LDCs do not show any LDC activity. Instead, they show phosphoribohydrolase activity by converting inactive CK nucleotides into active free-base forms to invoke CK responses

    Protein phosphorylation prediction: limitations, merits and pitfalls

    Get PDF
    Protein phosphorylation is a major protein post-translational modification process that plays a pivotal role in numerous cellular processes, such as recognition, signaling or degradation. It can be studied experimentally by various methodologies, including western blot analysis, site-directed mutagenesis, 2D gel electrophoresis, mass spectrometry etc. A number of in silico tools have also been developed in order to predict plausible phosphorylation sites in a given protein. In this review, we conducted a benchmark study including the leading protein phosphorylation prediction software, in an effort to determine which performs best. The first place was taken by GPS 2.2, having predicted all phosphorylation sites with a 83% fidelity while in second place came NetPhos 2.0 with 69%.  

    Aspergillus fumigatus challenged by human dendritic cells: metabolic and regulatory pathway responses testify a tight battle

    Get PDF
    Dendritic cells (DCs) are antigen presenting cells which serve as a passage between the innate and the acquired immunity. Aspergillosis is a major lethal condition in immunocompromised patients caused by the adaptable saprophytic fungus Aspergillus fumigatus. The healthy human immune system is capable to ward off A. fumigatus infections however immune-deficient patients are highly vulnerable to invasive aspergillosis. A. fumigatus can persist during infection due to its ability to survive the immune response of human DCs. Therefore, the study of the metabolism specific to the context of infection may allow us to gain insight into the adaptation strategies of both the pathogen and the immune cells. We established a metabolic model of A. fumigatus central metabolism during infection of DCs and calculated the metabolic pathway (elementary modes; EMs). Transcriptome data were used to identify pathways activated when A. fumigatus is challenged with DCs. In particular, amino acid metabolic pathways, alternative carbon metabolic pathways and stress regulating enzymes were found to be active. Metabolic flux modeling identified further active enzymes such as alcohol dehydrogenase, inositol oxygenase and GTP cyclohydrolase participating in different stress responses in A. fumigatus. These were further validated by qRT-PCR from RNA extracted under these different conditions. For DCs, we outlined the activation of metabolic pathways in response to the confrontation with A. fumigatus. We found the fatty acid metabolism plays a crucial role, along with other metabolic changes. The gene expression data and their analysis illuminate additional regulatory pathways activated in the DCs apart from interleukin regulation. In particular, Toll-like receptor signaling, NOD-like receptor signaling and RIG-I-like receptor signaling were active pathways. Moreover, we identified subnetworks and several novel key regulators such as UBC, EGFR, and CUL3 of DCs to be activated in response to A. fumigatus. In conclusion, we analyze the metabolic and regulatory responses of A. fumigatus and DCs when confronted with each other

    Complement sensitivity and factor H binding of European Francisella tularensis ssp. holarctica strains in selected animal species

    Get PDF
    Francisella tularensis is a Gram-negative bacterium, the causative agent of the zoonotic disease tularaemia. The bacterium has developed several extracellular and intracellular strategies to evade the hosts’ innate and adaptive immune responses. The aims of the study were to examine complement sensitivity of wild and attenuated F. tularensis ssp. holarctica strains in animal hosts of distinct sensitivity to the bacterium, to compare the complement-evading ability of wild strains of different phylogeographic background, and to examine the role of factor H in the host–pathogen interactions. Complement sensitivity assays were carried out on various F. tularensis ssp. holarctica wild strains and on the attenuated live vaccine strain (LVS) with sera of the highly sensitive house mouse (Mus musculus), the moderately sensitive European brown hare (Lepus europaeus) and the relatively resistant cattle (Bos taurus). Specific binding of complement regulator factor H to bacterial membrane proteins was examined by Western blot assays. All wild strains interacted with the hosts’ complement system and showed no significant differences in their survivability. The attenuated LVS was resistant to serum killing in mouse, but was lysed in the sera of hare and cattle. Direct binding of factor H to F. tularensis membrane proteins was not detected

    Integrated structural and functional analysis of the protective effects of kinetin against oxidative stress in mammalian cellular systems

    Get PDF
    © 2020, The Author(s). Metabolism and signaling of cytokinins was first established in plants, followed by cytokinin discoveries in all kingdoms of life. However, understanding of their role in mammalian cells is still scarce. Kinetin is a cytokinin that mitigates the effects of oxidative stress in mammalian cells. The effective concentrations of exogenously applied kinetin in invoking various cellular responses are not well standardized. Likewise, the metabolism of kinetin and its cellular targets within the mammalian cells are still not well studied. Applying vitality tests as well as comet assays under normal and hyper-oxidative states, our analysis suggests that kinetin concentrations of 500 nM and above cause cytotoxicity as well as genotoxicity in various cell types. However, concentrations below 100 nM do not cause any toxicity, rather in this range kinetin counteracts oxidative burst and cytotoxicity. We focus here on these effects. To get insights into the cellular targets of kinetin mediating these pro-survival functions and protective effects we applied structural and computational approaches on two previously testified targets for these effects. Our analysis deciphers vital residues in adenine phosphoribosyltransferase (APRT) and adenosine receptor (A2A-R) that facilitate the binding of kinetin to these two important human cellular proteins. We finally discuss how the therapeutic potential of kinetin against oxidative stress helps in various pathophysiological conditions

    Klimapflanzen und biologische Wege zu negativen Kohlendioxidemissionen

    No full text
    Climate plants are critical to prevent global warming as all efforts to save carbon dioxide are too slow and climate disasters on the rise. For best carbon dioxide harvesting we compare algae, trees and crop plants and use metagenomic analysis of environmental samples. We compare different pathways, carbon harvesting potentials of different plants as well as synthetic modifications including carbon dioxide flux balance analysis. For implementation, agriculture and modern forestry are important

    Modeling of shotgun sequencing of DNA plasmids using experimental and theoretical approaches

    No full text
    Background Processing and analysis of DNA sequences obtained from next-generation sequencing (NGS) face some difficulties in terms of the correct prediction of DNA sequencing outcomes without the implementation of bioinformatics approaches. However, algorithms based on NGS perform inefficiently due to the generation of long DNA fragments, the difficulty of assembling them and the complexity of the used genomes. On the other hand, the Sanger DNA sequencing method is still considered to be the most reliable; it is a reliable choice for virtual modeling to build all possible consensus sequences from smaller DNA fragments. Results In silico and in vitro experiments were conducted: (1) to implement and test our novel sequencing algorithm, using the standard cloning vectors of different length and (2) to validate experimentally virtual shotgun sequencing using the PCR technique with the number of cycles from 1 to 9 for each reaction. Conclusions We applied a novel algorithm based on Sanger methodology to correctly predict and emphasize the performance of DNA sequencing techniques as well as in de novo DNA sequencing and its further application in synthetic biology. We demonstrate the statistical significance of our results

    DNA storage—from natural biology to synthetic biology

    No full text
    Natural DNA storage allows cellular differentiation, evolution, the growth of our children and controls all our ecosystems. Here, we discuss the fundamental aspects of DNA storage and recent advances in this field, with special emphasis on natural processes and solutions that can be exploited. We point out new ways of efficient DNA and nucleotide storage that are inspired by nature. Within a few years DNA-based information storage may become an attractive and natural complementation to current electronic data storage systems. We discuss rapid and directed access (e.g. DNA elements such as promotors, enhancers), regulatory signals and modulation (e.g. lncRNA) as well as integrated high-density storage and processing modules (e.g. chromosomal territories). There is pragmatic DNA storage for use in biotechnology and human genetics. We examine DNA storage as an approach for synthetic biology (e.g. light-controlled nucleotide processing enzymes). The natural polymers of DNA and RNA offer much for direct storage operations (read-in, read-out, access control). The inbuilt parallelism (many molecules at many places working at the same time) is important for fast processing of information. Using biology concepts from chromosomal storage, nucleic acid processing as well as polymer material sciences such as electronical effects in enzymes, graphene, nanocellulose up to DNA macramé , DNA wires and DNA-based aptamer field effect transistors will open up new applications gradually replacing classical information storage methods in ever more areas over time (decades)

    Application of proteomic biomarkers in livestock disease management

    No full text
    The applications of proteomics in animal husbanding are broad and include monitoring proteome changes in the tissue and body fluids to interpret the physiological process during growth, development and production and in the detection and management of disease. The diversity of farm animal species from cattle, sheep, goats, chickens to fish and even invertebrate aquaculture species complicate the analysis and interpretation of proteome data. The recent technological advances in extraction and fractionation techniques along with platform sensitivity and data analysis have allowed discovery of next-generation biomarkers with high sensitivity, specificity and precision. These robust biomarkers are useful in monitoring health and well-being of animals, surveillance against animal pathogens, elucidating disease mechanisms, assessing pharmacologic response to therapeutic and directing genetic selection and breeding. A literature survey revealed that discovery of proteomic biomarkers in biological fluids (serum, plasma, urine, milk, exudates, tear, semen and genital secretion) provide readily accessible sources of samples for non- or minimally-invasive and cost-effective diagnosis tools. This area of research is actively expanding and future research would profitably focus on applications of multiple biomarkers to increase the diagnosis precision in livestock disease management. Therefore this review is aimed to provide a brief overview on successful experiences in using proteomics biomarkers identified in biological fluids for livestock diseases management
    corecore