76 research outputs found

    Rumination-focused cognitive behaviour therapy vs. cognitive behaviour therapy for depression:Study protocol for a randomised controlled superiority trial

    Get PDF
    BACKGROUND: Cognitive behavioural therapy is an effective treatment for depression. However, one third of the patients do not respond satisfactorily, and relapse rates of around 30 % within the first post-treatment year were reported in a recent meta-analysis. In total, 30–50 % of remitted patients present with residual symptoms by the end of treatment. A common residual symptom is rumination, a process of recurrent negative thinking and dwelling on negative affect. Rumination has been demonstrated as a major factor in vulnerability to depression, predicting the onset, severity, and duration of future depression. Rumination-focused cognitive behavioural therapy is a psychotherapeutic treatment targeting rumination. Because rumination plays a major role in the initiation and maintenance of depression, targeting rumination with rumination-focused cognitive behavioural therapy may be more effective in treating depression and reducing relapse than standard cognitive behavioural therapy. METHOD/DESIGN: This study is a two-arm pragmatic randomised controlled superiority trial comparing the effectiveness of group-based rumination-focused cognitive behaviour therapy with the effectiveness of group-based cognitive behavioural therapy for treatment of depression. One hundred twenty-eight patients with depression will be recruited from and given treatment in an outpatient service at a psychiatric hospital in Denmark. Our primary outcome will be severity of depressive symptoms (Hamilton Rating Scale for Depression) at completion of treatment. Secondary outcomes will be level of rumination, worry, anxiety, quality of life, behavioural activation, experimental measures of cognitive flexibility, and emotional attentional bias. A 6-month follow-up is planned and will include the primary outcome measure and assessment of relapse. DISCUSSION: The clinical outcome of this trial may guide clinicians to decide on the merits of including rumination-focused cognitive behavioural therapy in the treatment of depression in outpatient services. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02278224, registered 28 Oct. 2014

    The elusive theory of everything

    Get PDF
    We applaud Baumert and colleagues’ ambitious idea to integrate personality processes, structure, and development into a single general theory with the aim of fully explaining people’s behavior across situations. However, we argue that building a general theory of human behavior, similarly to a Theory of Everything, may not only be less feasible, but also less meaningful, than it appears at first sight

    Towards implementation of cognitive bias modification in mental health care: State of the science, best practices, and ways forward

    Get PDF
    Cognitive bias modification (CBM) has evolved from an experimental method testing cognitive mechanisms of psychopathology to a promising tool for accessible digital mental health care. While we are still discovering the conditions under which clinically relevant effects occur, the dire need for accessible, effective, and low-cost mental health tools underscores the need for implementation where such tools are available. Providing our expert opinion as Association for Cognitive Bias Modification members, we first discuss the readiness of different CBM approaches for clinical implementation, then discuss key considerations with regard to implementation. Evidence is robust for approach bias modification as an adjunctive intervention for alcohol use disorders and interpretation bias modification as a stand-alone intervention for anxiety disorders. Theoretical predictions regarding the mechanisms by which bias and symptom change occur await further testing. We propose that CBM interventions with demonstrated efficacy should be provided to the targeted populations. To facilitate this, we set a research agenda based on implementation frameworks, which includes feasibility and acceptability testing, co-creation with end-users, and collaboration with industry partners

    Output Substitution in Multi-Species Trawl Fisheries: Implications for Quota Setting

    Full text link

    Exploring UK medical school differences: the MedDifs study of selection, teaching, student and F1 perceptions, postgraduate outcomes and fitness to practise.

    Get PDF
    BACKGROUND: Medical schools differ, particularly in their teaching, but it is unclear whether such differences matter, although influential claims are often made. The Medical School Differences (MedDifs) study brings together a wide range of measures of UK medical schools, including postgraduate performance, fitness to practise issues, specialty choice, preparedness, satisfaction, teaching styles, entry criteria and institutional factors. METHOD: Aggregated data were collected for 50 measures across 29 UK medical schools. Data include institutional history (e.g. rate of production of hospital and GP specialists in the past), curricular influences (e.g. PBL schools, spend per student, staff-student ratio), selection measures (e.g. entry grades), teaching and assessment (e.g. traditional vs PBL, specialty teaching, self-regulated learning), student satisfaction, Foundation selection scores, Foundation satisfaction, postgraduate examination performance and fitness to practise (postgraduate progression, GMC sanctions). Six specialties (General Practice, Psychiatry, Anaesthetics, Obstetrics and Gynaecology, Internal Medicine, Surgery) were examined in more detail. RESULTS: Medical school differences are stable across time (median alpha = 0.835). The 50 measures were highly correlated, 395 (32.2%) of 1225 correlations being significant with p < 0.05, and 201 (16.4%) reached a Tukey-adjusted criterion of p < 0.0025. Problem-based learning (PBL) schools differ on many measures, including lower performance on postgraduate assessments. While these are in part explained by lower entry grades, a surprising finding is that schools such as PBL schools which reported greater student satisfaction with feedback also showed lower performance at postgraduate examinations. More medical school teaching of psychiatry, surgery and anaesthetics did not result in more specialist trainees. Schools that taught more general practice did have more graduates entering GP training, but those graduates performed less well in MRCGP examinations, the negative correlation resulting from numbers of GP trainees and exam outcomes being affected both by non-traditional teaching and by greater historical production of GPs. Postgraduate exam outcomes were also higher in schools with more self-regulated learning, but lower in larger medical schools. A path model for 29 measures found a complex causal nexus, most measures causing or being caused by other measures. Postgraduate exam performance was influenced by earlier attainment, at entry to Foundation and entry to medical school (the so-called academic backbone), and by self-regulated learning. Foundation measures of satisfaction, including preparedness, had no subsequent influence on outcomes. Fitness to practise issues were more frequent in schools producing more male graduates and more GPs. CONCLUSIONS: Medical schools differ in large numbers of ways that are causally interconnected. Differences between schools in postgraduate examination performance, training problems and GMC sanctions have important implications for the quality of patient care and patient safety

    The Analysis of Teaching of Medical Schools (AToMS) survey: an analysis of 47,258 timetabled teaching events in 25 UK medical schools relating to timing, duration, teaching formats, teaching content, and problem-based learning.

    Get PDF
    BACKGROUND: What subjects UK medical schools teach, what ways they teach subjects, and how much they teach those subjects is unclear. Whether teaching differences matter is a separate, important question. This study provides a detailed picture of timetabled undergraduate teaching activity at 25 UK medical schools, particularly in relation to problem-based learning (PBL). METHOD: The Analysis of Teaching of Medical Schools (AToMS) survey used detailed timetables provided by 25 schools with standard 5-year courses. Timetabled teaching events were coded in terms of course year, duration, teaching format, and teaching content. Ten schools used PBL. Teaching times from timetables were validated against two other studies that had assessed GP teaching and lecture, seminar, and tutorial times. RESULTS: A total of 47,258 timetabled teaching events in the academic year 2014/2015 were analysed, including SSCs (student-selected components) and elective studies. A typical UK medical student receives 3960 timetabled hours of teaching during their 5-year course. There was a clear difference between the initial 2 years which mostly contained basic medical science content and the later 3 years which mostly consisted of clinical teaching, although some clinical teaching occurs in the first 2 years. Medical schools differed in duration, format, and content of teaching. Two main factors underlay most of the variation between schools, Traditional vs PBL teaching and Structured vs Unstructured teaching. A curriculum map comparing medical schools was constructed using those factors. PBL schools differed on a number of measures, having more PBL teaching time, fewer lectures, more GP teaching, less surgery, less formal teaching of basic science, and more sessions with unspecified content. DISCUSSION: UK medical schools differ in both format and content of teaching. PBL and non-PBL schools clearly differ, albeit with substantial variation within groups, and overlap in the middle. The important question of whether differences in teaching matter in terms of outcomes is analysed in a companion study (MedDifs) which examines how teaching differences relate to university infrastructure, entry requirements, student perceptions, and outcomes in Foundation Programme and postgraduate training
    • …
    corecore