583 research outputs found

    Temperature influence on the carbon isotopic composition of Orbulina universa and Globigerina bulloides (planktonic foraminifera)

    Get PDF
    Laboratory experiments with the planktonic foraminifera Orbulina universa (symbiotic) and Globigerina bulloides (nonsymbiotic) were used to examine the effects of temperature, irradiance (symbiont photosynthesis), [CO32-], [HPO42-], and ontogeny on shell d13C values. In ambient seawater ([CO32-] = 171 mmol kg-1), the d13C of O. universa shells grown under low light (LL) levels is insensitive to temperature and records the d13C value of seawater TCO2. In contrast, the d13C of high light (HL) shells increases ~0.4‰ across 15-25°C (+0.050‰/°C). This suggests that the d13C enrichment due to symbiont photosynthetic activity is temperature-dependent. A comparison of HL O. universa grown in elevated [CO32-] seawater with ambient specimens shows that temperature does not affect the slope of the d13C/[CO32-] relationship previously described [Spero et al., 1997]. The d13C of G. bulloides shells decreases across the 15-24°C temperature range and d13C:temperature slopes decrease with increasing shell size (-0.13, -0.10, and -0.09‰/°C in 11- 12-, and 13-chambered shells, respectively). The pattern of lower d13C values at higher temperatures likely results from the incorporation of more respired CO2 into the shell at higher metabolic rates. The d13C of HL O. universa increases with increased seawater [HPO42-]

    A Common Love of Science: The One-Hundredth Meeting of the American Society of Ichthyologists and Herpetologists

    Get PDF
    One of the most important functions of an academic society such as the American Society of Ichthyologists and Herpetologists (ASIH) is to host conferences for colleagues to directly share and debate ideas and data. Academic society meetings have a long history that grew from social meetings of the privileged in the 16th and 17th centuries during which scientific topics were discussed. Scientific meetings of any nature can provide a stimulating environment to discuss and argue points (Unglow, 2002), as alluded to by Joseph Priestley (1733–1804) in the epigraph, which was written with fond memory of the Lunar Society meetings while he was in political exile (Priestley, 1793). In 1812, a gathering of local scientists formally established The Academy of Natural Sciences of Philadelphia (ANSP), a society “to occupy their leisure, in each other\u27s company, on subjects of natural science” for “the advancement and diffusion of useful, liberal human knowledge.” The founders agreed that the ANSP would be “perpetually exclusive of political, religious and national partialities, antipathies, preventions and prejudices” to avoid potential conflicts with “the interests of science” (Stroud, 1997: 227). With the rise and specialization of academic societies, a concomitant specialization of scientific gatherings followed. Narrowly focused meetings have an important role in advancing the field specific to their topic, but regular (i.e., annual) discipline-wide conferences are important for both the tangible (e.g., presentation of fact) and intangible (e.g., inspiration of new avenues of study) effects they have on the attendees. Conferences also allow attendees the opportunity to conduct Society business through board and committee meetings. In 2021, the ASIH held its 100th in-person meeting, the third and final centennial to be celebrated by this Society (2013 was the 100th year of the Society\u27s journal, Copeia, now Ichthyology & Herpetology, Smith and Mitchell, 2013; 2016 was the 100th year of the ASIH\u27s founding, Hilton and Crump, 2016). This paper celebrates this milestone of the ASIH, and reflects upon the history of the ASIH conferences

    Putting our heads together: interpersonal neural synchronization as a biological mechanism for shared intentionality

    Get PDF
    Shared intentionality, or collaborative interactions in which individuals have a shared goal and must coordinate their efforts, is a core component of human interaction. However, the biological bases of shared intentionality and, specifically, the processes by which the brain adjusts to the sharing of common goals, remain largely unknown. Using functional near infrared spectroscopy (fNIRS), coordination of cerebral hemodynamic activation was found in subject pairs when completing a puzzle together in contrast to a condition in which subjects completed identical but individual puzzles (same intention without shared intentionality). Interpersonal neural coordination was also greater when completing a puzzle together compared to two control conditions including the observation of another pair completing the same puzzle task or watching a movie with a partner (shared experience). Further, permutation testing revealed that the time course of neural activation of one subject predicted that of their partner, but not that of others completing the identical puzzle in different partner sets. Results indicate unique brain-to-brain coupling specific to shared intentionality beyond what has been previously found by investigating the fundamentals of social exchange

    Performance of a 229 Thorium solid-state nuclear clock

    Full text link
    The 7.8 eV nuclear isomer transition in 229 Thorium has been suggested as an etalon transition in a new type of optical frequency standard. Here we discuss the construction of a "solid-state nuclear clock" from Thorium nuclei implanted into single crystals transparent in the vacuum ultraviolet range. We investigate crystal-induced line shifts and broadening effects for the specific system of Calcium fluoride. At liquid Nitrogen temperatures, the clock performance will be limited by decoherence due to magnetic coupling of the Thorium nucleus to neighboring nuclear moments, ruling out the commonly used Rabi or Ramsey interrogation schemes. We propose a clock stabilization based on counting of flourescence photons and present optimized operation parameters. Taking advantage of the high number of quantum oscillators under continuous interrogation, a fractional instability level of 10^{-19} might be reached within the solid-state approach.Comment: 28 pages, 9 figure

    The Atlantic Ocean at the last glacial maximum: 1. Objective mapping of the GLAMAP sea-surface conditions

    Get PDF
    Recent efforts of the German paleoceanographic community have resulted in a unique data set of reconstructed sea-surface temperature for the Atlantic Ocean during the Last Glacial Maximum, plus estimates for the extents of glacial sea ice. Unlike prior attempts, the contributing research groups based their data on a common definition of the Last Glacial Maximum chronozone and used the same modern reference data for calibrating the different transfer techniques. Furthermore, the number of processed sediment cores was vastly increased. Thus the new data is a significant advance not only with respect to quality, but also to quantity. We integrate these new data and provide monthly data sets of global sea-surface temperature and ice cover, objectively interpolated onto a regular 1°x1° grid, suitable for forcing or validating numerical ocean and atmosphere models. This set is compared to an existing subjective interpolation of the same base data, in part by employing an ocean circulation model. For the latter purpose, we reconstruct sea surface salinity from the new temperature data and the available oxygen isotope measurements

    Shared neural correlates for building phrases in signed and spoken language

    Get PDF
    Abstract Research on the mental representation of human language has convincingly shown that sign languages are structured similarly to spoken languages. However, whether the same neurobiology underlies the online construction of complex linguistic structures in sign and speech remains unknown. To investigate this question with maximally controlled stimuli, we studied the production of minimal two-word phrases in sign and speech. Signers and speakers viewed the same pictures during magnetoencephalography recording and named them with semantically identical expressions. For both signers and speakers, phrase building engaged left anterior temporal and ventromedial cortices with similar timing, despite different linguistic articulators. Thus the neurobiological similarity of sign and speech goes beyond gross measures such as lateralization: the same fronto-temporal network achieves the planning of structured linguistic expressions
    • 

    corecore