476 research outputs found
Analyses of Chromosome Copy Number and Expression Level of Four Genes in the Ciliate \u3ci\u3eChilodonella uncinata\u3c/i\u3e Reveal a Complex Pattern that Suggests Epigenetic Regulation
Chilodonella uncinata, like all ciliates, contains two distinct nuclei in every cell: a germline micronucleus and a somatic macronucleus. The macronucleus develops from the zygotic nucleus through a series of chromosomal rearrangements. Macronuclear development in C. uncinata yields a nucleus with highly amplified gene-sized chromosomes. The macronucleus is transcriptionally active during vegetative growth while there is no expression in the micronucleus except during a brief period following conjugation. Gene family evolution in ciliates occurs through complex processes including gene duplication and an alternative processing of scrambled genes. Here we use quantitative PCR to compare relative expression levels of eight genes (SSU-rDNA, actin, α-tubulin and five β-tubulin sequences) to their abundance as macronuclear chromosomes. We show that three strains of the morphospecies C. uncinata share similar patterns across all loci. For example, we find an inverse correlation among five β-tubulin genes whereby the more abundant macronuclear chromosomes have lower levels of expression compared to less abundant chromosomes. We discuss the implication of our findings, which suggest that epigenetic mechanisms maintain chromosome copy number in C. uncinata
Domain wall structure in magnetic bilayers with perpendicular anisotropy
We study the magnetic domain wall structure in magnetic bilayers (two
ultrathin ferromagnetic layers separated by a non magnetic spacer) with
perpendicular magnetization. Combining magnetic force and ballistic electron
emission microscopies, we are able to reveal the details of the magnetic
structure of the wall with a high spatial accuracy. In these layers, we show
that the classical Bloch wall observed in single layers transforms into
superposed N\'eel walls due to the magnetic coupling between the ferromagnetic
layers. Quantitative agreement with micromagnetic calculations is achieved.Comment: Author adresses AB, SR, JM and AT: Laboratoire de Physique des
Solides, CNRS, Universit\'e Paris Sud, UMR 8502, 91405 Orsay Cedex, France ML
: Laboratoire PMTM, Institut Galil\'ee, CNRS, Universit\'e Paris-13, UPR
9001, 93430 Villetaneuse, Franc
European marine aggregates resources: Origins, usage, prospecting and dredging techniques
Marine aggregates (sand and gravel) are important mineral resources and traded commodities. Their significance is bound to increase further, due to increasing coastal zone development, stricter environmental regulation concerning land-won aggregates and increasing demand for beach replenishment material. Marine aggregate (MA) deposits can be differentiated into relict and modern deposits. The former consist of sedimentary material deposited in the past and under different environmental and sedimentary regimes than those existing presently (e.g. the gravel/ sand deposits of the Pleistocene buried river valleys of the northwestern European shelves). The latter are deposits, which have been formed and controlled by the modern hydro-and sediment dynamic conditions (e.g. the linear sand banks of the southern North Sea). The present contribution reviews the current state of affairs in 9 representative European Member States concerning the prospecting and extraction (dredging) techniques as well as the levels of production and usage. The review has shown a mixed record as, in some of the studied States, marine aggregate production is an important and streamlined activity, whereas other States have not yet developed efficient marine aggregate policies and industries. It has also shown that although attempts have been lately made to coordinate the field, the industry still faces problems, which hinder its sustainable development. These include (amongst others): lack of standardisation of the relevant information, difficulties in the access to information, non-coherent regulatory regimes and limited collaboration/coordination between the marine scientific research establishments and the marine aggregate industry. These issues should be addressed as quickly as possible in order to exploit effectively this important mineral resource
Recommended from our members
Negative Associations between Corpus Callosum Midsagittal Area and IQ in a Representative Sample of Healthy Children and Adolescents
Documented associations between corpus callosum size and cognitive ability have heretofore been inconsistent potentially owing to differences in sample characteristics, differing methodologies in measuring CC size, or the use of absolute versus relative measures. We investigated the relationship between CC size and intelligence quotient (IQ) in the NIH MRI Study of Normal Brain Development sample, a large cohort of healthy children and adolescents (aged six to 18, n = 198) recruited to be representative of the US population. CC midsagittal area was measured using an automated system that partitioned the CC into 25 subregions. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). After correcting for total brain volume and age, a significant negative correlation was found between total CC midsagittal area and IQ (r = −0.147; p = 0.040). Post hoc analyses revealed a significant negative correlation in children (age<12) (r = −0.279; p = 0.004) but not in adolescents (age 12) (r = −0.005; p = 0.962). Partitioning the subjects by gender revealed a negative correlation in males (r = −0.231; p = 0.034) but not in females (r = 0.083; p = 0.389). Results suggest that the association between CC and intelligence is mostly driven by male children. In children, a significant gender difference was observed for FSIQ and PIQ, and in males, a significant age-group difference was observed for FSIQ and PIQ. These findings suggest that the correlation between CC midsagittal area and IQ may be related to age and gender
A review of fMRI simulation studies
Simulation studies that validate statistical techniques for fMRI data are challenging due to the complexity of the data. Therefore, it is not surprising that no common data generating process is available (i.e. several models can be found to model BOLD activation and noise). Based on a literature search, a database of simulation studies was compiled. The information in this database was analysed and critically evaluated focusing on the parameters in the simulation design, the adopted model to generate fMRI data, and on how the simulation studies are reported. Our literature analysis demonstrates that many fMRI simulation studies do not report a thorough experimental design and almost consistently ignore crucial knowledge on how fMRI data are acquired. Advice is provided on how the quality of fMRI simulation studies can be improved
Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents.
Documented associations between corpus callosum size and cognitive ability have heretofore been inconsistent potentially owing to differences in sample characteristics, differing methodologies in measuring CC size, or the use of absolute versus relative measures. We investigated the relationship between CC size and intelligence quotient (IQ) in the NIH MRI Study of Normal Brain Development sample, a large cohort of healthy children and adolescents (aged six to 18, n = 198) recruited to be representative of the US population. CC midsagittal area was measured using an automated system that partitioned the CC into 25 subregions. IQ was measured using the Wechsler Abbreviated Scale of Intelligence (WASI). After correcting for total brain volume and age, a significant negative correlation was found between total CC midsagittal area and IQ (r = -0.147; p = 0.040). Post hoc analyses revealed a significant negative correlation in children (ag
- …