3,855 research outputs found

    Coronae of Stars with Super Solar Elemental Abundances

    Full text link
    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the First Ionization Potential (FIP). This study focuses on the coronal composition of stars with super-solar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, ι\iota Hor, HR 7291, τ\tau Boo, and α\alpha Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances measured in this paper are obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra on board the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and τ\tau Boo no FIP effect is present, while ι\iota Hor, HR 7291, and α\alpha Cen A and B show a clear FIP trend. These conclusions hold whether the comparison is made with solar abundances or the individual stellar abundances. Unlike the solar corona where low FIP elements are enriched, in these stars the FIP effect is consistently due to a depletion of high FIP elements with respect to actual photospheric abundances. Comparing to solar abundances (instead of stellar) yields the same fractionation trend as on the Sun. In both cases a similar FIP bias is inferred, but different fractionation mechanisms need to be invoked.Comment: 11 pages, 7 figures, submitted to A&A. Comments are welcom

    Fusing Continuous-valued Medical Labels using a Bayesian Model

    Full text link
    With the rapid increase in volume of time series medical data available through wearable devices, there is a need to employ automated algorithms to label data. Examples of labels include interventions, changes in activity (e.g. sleep) and changes in physiology (e.g. arrhythmias). However, automated algorithms tend to be unreliable resulting in lower quality care. Expert annotations are scarce, expensive, and prone to significant inter- and intra-observer variance. To address these problems, a Bayesian Continuous-valued Label Aggregator(BCLA) is proposed to provide a reliable estimation of label aggregation while accurately infer the precision and bias of each algorithm. The BCLA was applied to QT interval (pro-arrhythmic indicator) estimation from the electrocardiogram using labels from the 2006 PhysioNet/Computing in Cardiology Challenge database. It was compared to the mean, median, and a previously proposed Expectation Maximization (EM) label aggregation approaches. While accurately predicting each labelling algorithm's bias and precision, the root-mean-square error of the BCLA was 11.78±\pm0.63ms, significantly outperforming the best Challenge entry (15.37±\pm2.13ms) as well as the EM, mean, and median voting strategies (14.76±\pm0.52ms, 17.61±\pm0.55ms, and 14.43±\pm0.57ms respectively with p<0.0001p<0.0001)

    Sustained-release steroids for the treatment of diabetic macular edema.

    Get PDF
    Glucocorticoids have been used for decades in the treatment of ocular disorders via topical, periocular, and more recently intravitreal routes. However, their exact mechanisms of action on ocular tissues remain imperfectly understood. Fortunately, two recently approved intravitreal sustained-release drug delivery systems have opened new perspectives for these very potent drugs. To date, among other retinal conditions, their label includes diabetic macular edema, for which a long-lasting therapeutic effect has been demonstrated both morphologically and functionally in several randomized clinical trials. The rate of ocular complications of intravitreal sustained-release steroids, mainly cataract formation and intraocular pressure elevation, is higher than with anti-vascular endothelial growth factor agents. Yet, a better understanding of the mechanisms underlying these adverse effects and the search for the minimal efficient dose should help optimize their therapeutic window

    Dielectronic Recombination (via N=2 --> N'=2 Core Excitations) and Radiative Recombination of Fe XX: Laboratory Measurements and Theoretical Calculations

    Get PDF
    We have measured the resonance strengths and energies for dielectronic recombination (DR) of Fe XX forming Fe XIX via N=2 --> N'=2 (Delta_N=0) core excitations. We have also calculated the DR resonance strengths and energies using AUTOSTRUCTURE, HULLAC, MCDF, and R-matrix methods, four different state-of-the-art theoretical techniques. On average the theoretical resonance strengths agree to within <~10% with experiment. However, the 1 sigma standard deviation for the ratios of the theoretical-to-experimental resonance strengths is >~30% which is significantly larger than the estimated relative experimental uncertainty of <~10%. This suggests that similar errors exist in the calculated level populations and line emission spectrum of the recombined ion. We confirm that theoretical methods based on inverse-photoionization calculations (e.g., undamped R-matrix methods) will severely overestimate the strength of the DR process unless they include the effects of radiation damping. We also find that the coupling between the DR and radiative recombination (RR) channels is small. We have used our experimental and theoretical results to produce Maxwellian-averaged rate coefficients for Delta_N=0 DR of Fe XX. For kT>~1 eV, which includes the predicted formation temperatures for Fe XX in an optically thin, low-density photoionized plasma with cosmic abundances, our experimental and theoretical results are in good agreement. We have also used our R-matrix results, topped off using AUTOSTRUCTURE for RR into J>=25 levels, to calculate the rate coefficient for RR of Fe XX. Our RR results are in good agreement with previously published calculations.Comment: To be published in ApJS. 65 pages with 4 tables and lots of figure
    corecore