40 research outputs found

    Prenatal stress induces a depressive-like phenotype in adolescent rats: The key role of TGF-β1 pathway

    Get PDF
    Stressful experiences early in life, especially in the prenatal period, can increase the risk to develop depression during adolescence. However, there may be important qualitative and quantitative differences in outcome of prenatal stress (PNS), where some individuals exposed to PNS are vulnerable and develop a depressive-like phenotype, while others appear to be resilient. PNS exposure, a well-established rat model of early life stress, is known to increase vulnerability to depression and a recent study demonstrated a strong interaction between transforming growth factor-β1 (TGF-β1) gene and PNS in the pathogenesis of depression. Moreover, it is well-known that the exposure to early life stress experiences induces brain oxidative damage by increasing nitric oxide levels and decreasing antioxidant factors. In the present work, we examined the role of TGF-β1 pathway in an animal model of adolescent depression induced by PNS obtained by exposing pregnant females to a stressful condition during the last week of gestation. We performed behavioral tests to identify vulnerable or resilient subjects in the obtained litters (postnatal day, PND > 35) and we carried out molecular analyses on hippocampus, a brain area with a key role in the pathogenesis of depression. We found that female, but not male, PNS adolescent rats exhibited a depressive-like behavior in forced swim test (FST), whereas both male and female PNS rats showed a deficit of recognition memory as assessed by novel object recognition test (NOR). Interestingly, we found an increased expression of type 2 TGF-β1 receptor (TGFβ-R2) in the hippocampus of both male and female resilient PNS rats, with higher plasma TGF-β1 levels in male, but not in female, PNS rats. Furthermore, PNS induced the activation of oxidative stress pathways by increasing inducible nitric oxide synthase (iNOS), NADPH oxidase 1 (NOX1) and NOX2 levels in the hippocampus of both male and female PNS adolescent rats. Our data suggest that high levels of TGF-β1 and its receptor TGFβ-R2 can significantly increase the resiliency of adolescent rats to PNS, suggesting that TGF-β1 pathway might represent a novel pharmacological target to prevent adolescent depression in rats

    Are the NPS commonly used? An extensive investigation in Northern Italy based on hair analysis

    No full text
    New Psychoactive Substances (NPS) are present on the Italian illicit markets but data from the analysis of biological samples to evaluate their real consumption are rare. For this reason, an epidemiological study was carried out by means a UPLC-MS/MS method for the determination of 115 NPS on keratin matrix. A total of 847 hair samples was collected in 2020 and 2021 and analysed. The sample donors were in the age range 18-40 years, from both genders, and were tested either for driving re-licensing or for drug withdrawal monitoring. The UPLC-MS/MS system consisted of a Waters ACQUITY UPLC® I-Class, coupled with a Waters XEVO TQ-XS triple quadrupole mass spectrometer. The method was developed and fully validated according to international guidelines. LODs were set as the minimum criterion to identify positive samples. Overall, 56 samples resulted positive for ketamine, 35 for norketamine, 6 for fentanyl, 3 for norfentanyl, 3 for 4-ANPP, 3 for MDMB-4en-PINACA, 2 for N,N-DMT, 2 for 5-chloro AB-PINACA, 1 for α-PHP and 1 for methcathinone. NPS were detected in a small part of samples (8.4%), which seems in contrast with their apparent wide diffusion in Italy, yet it is congruent with similar investigation based on hair analysis. Future studies will be performed to expand the investigated population, especially in terms of age and origin

    Chronic treatment with the antipsychotic drug blonanserin modulates the responsiveness to acute stress with anatomical selectivity

    No full text
    Rationale Patients diagnosed with schizophrenia typically receive life-long treatments with antipsychotic drugs (APDs). However, the impact of chronic APDs treatment on neuroplastic mechanisms in the brain remains largely elusive. Objective Here, we focused on blonanserin, a second-generation antipsychotic (SGA) that acts as an antagonist at dopamine D2, D3, and serotonin 5-HT2A receptors, and represents an important tool for the treatment of schizophrenia. Methods We used rats to investigate the ability of chronic treatment blonanserin to modulate the activity of brain structures relevant for schizophrenia, under baseline conditions or in response to an acute forced swim session (FSS). We measured the expression of different immediate early genes (IEGs), including c-Fos, Arc/Arg 3.1, Zif268 and Npas4. Results Blonanserin per se produced limited changes in the expression of these genes under basal conditions, while, as expected, FSS produced a significant elevation of IEGs transcription in different brain regions. The response of blonanserin-treated rats to FSS show anatomical and gene-selective differences. Indeed, the upregulation of IEGs was greatly reduced in the striatum, a brain structure enriched in dopamine receptors, whereas the upregulation of some genes (Zif268, Npas4) was largely preserved in other regions, such as the prefrontal cortex and the ventral hippocampus. Conclusions Taken together, our findings show that chronic exposure to blonanserin modulates selective IEGs with a specific anatomical profile. Moreover, the differential activation of specific brain regions under challenging conditions may contribute to specific clinical features of the drug
    corecore