29 research outputs found

    Onderzoek naar bovengrensscenario's voor klimaatverandering voor overstromingsbescherming van Nederland : internationale wetenschappelijke beoordeling

    Get PDF
    De Deltacommissie heeft een internationaal wetenschappelijk onderzoek laten doen naar de bovengrensscenario’s voor klimaatverandering om Nederland te kunnen beschermen tegen overstromingen. Deze wetenschappelijke visie is gebruikt voor het opstellen van het rapport van de Deltacommissie. Het onderliggende onderzoek baseert zich op de meest recente inzichten van de bovenwaarden en langetermijnprojecties voor de zeespiegelstijging tot 2200 van door het klimaat veroorzaakte zeespiegelstijging, veranderende stormcondities en piekafvoer van de Rij

    Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations

    Get PDF
    Probability estimates of the future change of extreme precipitation events are usually based on a limited number of available global climate model (GCM) or regional climate model (RCM) simulations. Since floods are related to heavy precipitation events, this restricts the assessment of flood risks. In this study a relatively simple method has been developed to get a better description of the range of changes in extreme precipitation events. Five bias-corrected RCM simulations of the 1961-2100 climate for a single greenhouse gas emission scenario (A1B SRES) were available for the Rhine basin. To increase the size of this five-member RCM ensemble, 13 additional GCM simulations were analysed. The climate responses of the GCMs are used to modify an observed (1961-1995) precipitation time series with an advanced delta change approach. Changes in the temporal means and variability are taken into account. It is found that the range of future change of extreme precipitation across the five-member RCM ensemble is similar to results from the 13-member GCM ensemble. For the RCM ensemble, the time series modification procedure also results in a similar climate response compared to the signal deduced from the direct model simulations. The changes from the individual RCM simulations, however, systematically differ from those of the driving GCMs, especially for long return periods

    Nieuwe probabilistische methode om overstromingsrisico’s te schatten

    Get PDF
    Bij onderzoek naar toekomstige overstromingsrisico's worden vaak de resultaten op basis van klimaatsimulaties gepresenteerd en met elkaar vergeleken zonder dat iets gezegd wordt over de kans op veranderingen in het overstromingsrisico. Om zulke kansen te berekenen, is een probabilistische aanpak nodig. In 2010 en 2011 voerden de Vrije Universiteit Amsterdam, het KNMI, Wageningen Universiteit en Deltares het onderzoek 'Aandacht voor Veiligheid 2' uit, dat een demonstratie omvatte van een methode om probabilistische schattingen voor toekomstige overstromingsrisico's te maken. Die methode toont dat het mogelijk is de kans te schatten dat het toekomstige overstromingsrisico groter is dan het huidige overstromingsrisico

    Exploring high-end climate change scenarios for flood protection of the Netherlands

    Get PDF
    This international scientific assessment has been carried out at the request of the Dutch Delta Committee. The "Deltacommissie" requested that the assessment explore the high-end climate change scenarios for flood protection of the Netherlands. It is a state-of–the art scientific assessment of the upper bound values and longer term projections (for sea level rise up to 2200) of climate induced sea level rise, changing storm surge conditions and peak discharge of river Rhine. It comprises a review of recent studies, model projections and expert opinions of more than 20 leading climate scientists from different countries around the North Sea, Australia and the US

    Attention to safety 2

    Get PDF
    Tot op heden heeft onderzoek naar toekomstig overstromingsrisico vooral gebruik gemaakt van de scenarioaanpak. Het belangrijkste doel van deze studie is om een demonstratie te geven van een methode voor het produceren van probabilistische schattingen van overstromingsrisico’s als gevolg van klimaatverandering. Het onderzoek richt zich op twee casestudy trajecten langs de Rijn: Bonn-Duisburg en Mainz-Koblenz

    Extreme hydro-meteorological events and their probabilities = Extreme hydro-meteorologische gebeurtenissen en de kans daarop

    Get PDF
    Extreme hydro-meteorologische gebeurtenissen hebben vaak een grote maatschappelijke impact. Bescherming tegen de gevolgen van zulke gebeurtenissen, zoals zeer natte periodes, is veelal gebaseerd op extremen, zoals overstromingen, met overschrijdingkansen van slechts eens in de 100 tot eens in de 10.000 jaar. Door gebrek aan lange waarnemingsreeksen worden zulke extremen gewoonlijk geschat door extrapolatie van een aan de waarnemingen gefitte kansverdeling. Nadeel van deze methode is dat de schattingen sterk afhangen van de veronderstelde kansverdeling. De in dit proefschrift gebruikte tijdreeks resampling vormt een aantrekkelijk alternatief omdat geen aannames over de onderliggende kansverdeling nodig zijn. Tijdreeks resampling geeft daarnaast de mogelijkheid om simultaan reeksen voor verschillende meteorologische variabelen en locaties te simuleren waarbij zowel de correlaties tussen de variabelen als de ruimtelijke correlaties automatisch behouden blijven. Resampling maakt het verder mogelijk om veel langere reeksen te simuleren dan de standaard historische reeksen. Zulke zeer lange reeksen bevatten gewoonlijk verschillende niet eerder waargenomen extremen die zeer welkom zijn bij een frequentieanalyse van de extremen omdat ze de statistische onzekerheid van het resultaat reduceren. In dit proefschrift worden, met het oog op hydrologische toepassingen, zulke zeer lange tijdreeksen gesimuleerd om de grootte en de bijbehorende overschrijdingskans te bepalen van zeer natte periodes in het stroomgebied van de Rijn (die tot overstromingen zouden kunnen leiden) en van extreme droogte in Nederland (die economische schade in de landbouw en scheepvaart tot gevolg heeft). Resampling technieken worden tenslotte ook gebruikt om de statistische onzekerheid te kwantificere

    Bound in honor:How honor values and insults affect the experience and management of conflicts

    No full text
    A quasi-experiment tested the effects of honor values and the use of insults by the other party on perceived conflict, negative emotions, and intentions to behave distributively and integratively during a workplace conflict. After honor values were measured, participants read a scenario in which a conflict was described. In the scenarios, we manipulated whether the other party used an insult by describing the other party's statements such that either an insult was uttered or no insult was uttered. Consistent with our hypotheses, results showed that conflicts in which the other party used an insult lead to higher ratings of perceived conflict, more negative emotions, and stronger intentions to engage in distributive behavior than conflicts in which the other party did not use an insult in high-honor-value participants, but not in low-honor-value participants. Mediation analyses showed that the interactive effect of honor values and other party's insults on intentions to behave distributively could be explained by perceived conflict and negative emotions

    Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability

    No full text
    Future changes in extreme multi-day precipitation will influence the probability of floods in the river Rhine basin. In this paper the spread of the changes projected by climate models at the end of this century (2081–2100) is studied for a 17-member ensemble of a single Global Climate Model (GCM) and results from the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble. All climate models were driven by the IPCC SRES A1B emission scenario. An analysis of variance model is formulated to disentangle the contributions from systematic differences between GCMs and internal climate variability. Both the changes in the mean and characteristics of extremes are considered. To estimate variances due to internal climate variability a bootstrap method was used. The changes from the GCM simulations were linked to the local scale using an advanced non-linear delta change approach. This approach uses climate responses of the GCM to transform the daily precipitation of 134 sub-basins of the river Rhine. The transformed precipitation series was used as input for the hydrological Hydrologiska Byråns Vattenbalansavdelning model to simulate future river discharges. Internal climate variability accounts for about 30 % of the total variance in the projected climate trends of average winter precipitation in the CMIP3 ensemble and explains a larger fraction of the total variance in the projected climate trends of extreme precipitation in the winter half-year. There is a good correspondence between the direction and spread of the changes in the return levels of extreme river discharges and extreme 10-day precipitation over the Rhine basin. This suggests that also for extreme discharges a large fraction of the total variance can be attributed to internal climate variability

    Uncertainty in the future change of extreme precipitation over the Rhine basin: the role of internal climate variability

    No full text
    Future changes in extreme multi-day precipitation will influence the probability of floods in the river Rhine basin. In this paper the spread of the changes projected by climate models at the end of this century (2081–2100) is studied for a 17-member ensemble of a single Global Climate Model (GCM) and results from the Coupled Model Intercomparison Project Phase 3 (CMIP3) ensemble. All climate models were driven by the IPCC SRES A1B emission scenario. An analysis of variance model is formulated to disentangle the contributions from systematic differences between GCMs and internal climate variability. Both the changes in the mean and characteristics of extremes are considered. To estimate variances due to internal climate variability a bootstrap method was used. The changes from the GCM simulations were linked to the local scale using an advanced non-linear delta change approach. This approach uses climate responses of the GCM to transform the daily precipitation of 134 sub-basins of the river Rhine. The transformed precipitation series was used as input for the hydrological Hydrologiska Byråns Vattenbalansavdelning model to simulate future river discharges. Internal climate variability accounts for about 30 % of the total variance in the projected climate trends of average winter precipitation in the CMIP3 ensemble and explains a larger fraction of the total variance in the projected climate trends of extreme precipitation in the winter half-year. There is a good correspondence between the direction and spread of the changes in the return levels of extreme river discharges and extreme 10-day precipitation over the Rhine basin. This suggests that also for extreme discharges a large fraction of the total variance can be attributed to internal climate variability
    corecore