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Summary in Dutch

Tot op heden heeft onderzoek naar toekomstig overstromingsrisico vooral gebruik gemaakt van de 
scenarioaanpak. Het belangrijkste doel van deze studie is om een demonstratie te geven van een 
methode voor het produceren van probabilistische schattingen van overstromingsrisico’s als gevolg 
van klimaatverandering. Het onderzoek richt zich op twee casestudy trajecten langs de Rijn: Bonn-
Duisburg en Mainz-Koblenz.

Eerst hebben we een ensemble van lange (3000-jaar) geresampelde tijdreeksen van klimaat-
variabelen gegenereerd op basis van 12 GCM simulaties. Aan dit ensemble hebben we een 
ensemble van zes RCM simulaties toegevoegd uit het RheinBlick 2050 project. Deze zijn gebruikt 
in het hydrologische model HBV-96 om rivierafvoer te simuleren. Daarna is een schatting gemaakt 
van extreme afvoerkwantielen per klimaattijdreeks voor herhalingstijden tot 3000 jaar. Om van 
extreme rivierafvoeren tot overstromingsschade- en risico te komen hebben we een eenvoudig 
inundatiemodel ontwikkeld (Floodscanner), en dit gekoppeld aan een overstromingsschademodel 
(Damagescanner).

Met deze aanpak hebben we probabilistische overstromingsrisico scenario’s ontwikkeld. Hiermee 
kunnen we de kans schatten dat een toekomstig overstromingsrisico hoger is dan het huidige risico 
(binnen de grenzen van deze studie), namelijk: 92% voor het gebied Bonn-Duisburg en 96% voor het 
gebied Mainz-Mosel. Met deze methode kan de kans worden geschat dat een overstromingsrisico 
hoger wordt, wat een evaluatie van risico onder extreme toekomstige situaties mogelijk maakt.

Summary

To date, fl ood risk research has predominantly relied on a discrete scenario-based approach. In the 
present study we demonstrate a framework for producing probabilistic estimates of fl ood risk under 
climate change, focussing on two case-study stretches of the Rhine: Bonn-Duisburg and Mainz-
Koblenz.

We used an ensemble of six (bias-corrected) RCM future simulations to create a 3000-yr time-series 
through resampling. This was complemented with 12 GCM-based future time-series, constructed 
by resampling observed climate time-series and modifying these to represent future conditions 
using an advanced delta-change approach. The resampled time-series were used as input in the 
hydrological model HBV-96 to simulate discharge, and extreme discharge quantiles were estimated. 
To convert extreme discharges to estimates of fl ood damage and fl ood risk, we developed a simple 
inundation model (Floodscanner), and coupled this with a fl ood damage model (Damagescanner).

Using this approach, we developed probabilistic fl ood risk scenarios. This allows us to estimate the 
probability of future fl ood risk exceeding current risk (given the limitations of the study), namely: 
92% for the section Bonn-Duisburg and 96% for the section Mainz-Mosel. Using such a framework 
it is possible to assess the probability that fl ood risk will increase by any given factor, allowing for 
the assessment of risk under possible extreme future scenarios.
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Extended summary

Background
To date, future fl ood risk assessments have predominantly relied on a discrete scenario-based 
approach. This is also the case in climate change impact assessments in general. The discrete scenarios 
approach is useful for exploring potential impacts of climate change, but presents problems for 
assessing the effectiveness of adaptation options. Recent research proposes a probabilistic approach, 
generating probability density functions (PDFs) of climate change. Next to research on probabilistic 
climate change scenarios, the climate impacts community has expressed the need for probabilistic 
impact assessments. In the Netherlands, the project Attention for Safety (AvV), as well as the report 
of the Veerman Commission (www.deltacommissie.com), recommended the development of such 
methods for probabilistic fl ood risk assessments. The present study responds to this, and is the fi rst 
attempt to assess future fl ood risk under climate change in a probabilistic framework.

Aims and objectives
The main aim of this research is to provide a demonstration of a framework for producing 
probabilistic estimates of fl ood risk, and to demonstrate how ensembles of climate projections can 
be constructed and used for this purpose.

The main objectives are:
• To generate long resampled time-series of climate variables and discharge for use in probabilistic 

fl ood risk assessments;
• To develop probability density functions of extreme discharge under climate change;
• To develop a rapid inundation model capable of providing the large number of inundation 

maps needed in probabilistic fl ood risk assessments, and to couple this with a fl ood damage 
model;

• To demonstrate the production of fl ood risk estimates in a probabilistic framework.

Setup of main report
The main part of this synthesis report is set up as follows. In Section 1 we discuss the background to 
the study and the aims and objectives. In Section 2 we describe the study area, followed in Section 
3 with methods and data used in the project. Section 4 describes the results of a pilot study carried 
out to develop and validate the new inundation model; the pilot study was carried out for the Meuse 
River in Dutch Limburg, since relatively good data are available for model testing and validation. In 
this section we also present a limited validation for the Rhine basin. In Section 5 we present the 
results of the probabilistic fl ood risk analyses for two case-study stretches of the Rhine in Germany, 
namely: (a) Bonn-Duisburg; and (b) Mainz-Koblenz. In Section 6 we discuss the fi ndings, limitations, 
and future research needs, and fi nally we provide conclusions in Section 7.

Study area
The probabilistic fl ood risk assessment focuses on two case-study stretches of the Rhine River in 
Germany, namely the sections: (a) Bonn-Duisburg; and (b) Mainz-Koblenz. The Rhine is one of the 
most important industrial transport routes in the world, and about 58 million people inhabit the 
river basin, of which an estimated 10.5 million live in fl ood-prone areas. Many studies have assessed 
how climate change may alter the discharge regime of the River Rhine. These studies suggest that 
mean winter discharge at Lobith (border Germany-Netherlands) may increase by 0 to 30% by 2050, 
while mean summer discharge may change by -45 to +15%. Moreover, the magnitude of extreme 
fl ood events is generally projected to increase. However, the assessment of current and future fl ood 
risk in the basin is still in its early phases.
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Developing long time-series of climate variables and discharge for use in probabilistic fl ood risk 
assessments
For this research, bias-corrected, resampled time-series of 3000 years from an ensemble of six 
Regional Climate Model (RCM) simulations were made available through the RheinBlick 2050 
project. Some of the RCM simulations used in RheinBlick 2050 were driven by the same General 
Circulation Model (GCM) simulation or by an alternative simulation run or version of the same GCM. 
In order to enlarge the number of GCMs in our ensemble, 12 GCM simulations run in the context of 
the 3rd Coupled Model Intercomparison Project (CMIP3) were downscaled using an advanced delta-
change approach. The GCM simulations used were all driven by the Intergovernmental Panel on 
Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A1B emission scenario.

Representative time-series of the future GCM climates were obtained by transforming a 3000-
year resampled sequence of daily precipitation and temperature from historical observations for 
the period 1961-1995 from the International Commission for the Hydrology of the Rhine basin 
(CHR) reference dataset. An advanced delta method was used taking into account the changes in 
extreme rainfall and temperature variability as well as the changes in their means. The resampling 
algorithm in this study, which can be regarded as a weather generator, is the same as that used in 
the RheinBlick 2050 project. The hydrological model HBV-96 was then forced with the 3000-year 
time-series for the 12 GCM and six RCM simulations to derive 3000-year synthetic sequences of 
daily discharge. Discharge quantiles for the different fl ood return periods were estimated using the 
Weissman approach.

The winter half-year maximum 10-day basin-average precipitation sums were analysed, because 
these events often cause high discharge in the lower part of the Rhine basin. The GCM ensemble 
showed higher quantiles of winter half-year maximum 10-day basin-average precipitation sums 
than in the RCM future ensemble for each return period. The spread between the estimated 
quantiles of winter half-year maximum 10-day basin-average precipitation sums for the RCM future 
ensemble members increases as the return periods become longer. For the extreme discharge 
events, the bandwidths of the two ensembles are similar at Lobith and Cologne, but the bandwidth 
of the RCM ensemble is smaller than that of the GCM ensemble at Kaub. We also found interesting 
spatial differences in the results. For example, the climate model ensemble members do not cause 
the same changes in extreme discharge in all parts of the basin. This demonstrates the importance 
of using spatially distributed climate simulations when carrying out climate change impact studies.

The results show that adding the ensemble of 12 GCM members to the existing ensemble of six RCM 
members (driven by four parent GCMs) from RheinBlick 2050 leads to a relatively small increase in 
the overall spread of the extreme discharge results, although the ensemble means of the estimated 
discharge quantiles appear to be greater for the GCM ensemble. It must therefore be concluded that 
the 6 RCMs used have a considerable infl uence on the climate, and therefore discharge, projections.

Developing an inundation model capable of providing the large number of inundation maps 
needed in probabilistic fl ood risk assessments
A hindrance to probabilistic fl ood risk modelling has been the large number of inundation maps 
required, since for each ensemble member and/or scenario, damage estimates must be made for 
several fl ood return periods, each with a different associated inundation depth and extent. Generally, 
the production of fl ood hazard maps is very time-consuming and computationally expensive. In this 
project, we developed a rapid fl ood inundation model (Floodscanner), coupled to an existing fl ood 
damage model (Damagescanner). The Floodscanner model appears to perform fairly well in both 
the Rhine and Meuse basins, but the simplifi cations used dictate its application. The Floodscanner 
method is certainly not intended to replace the need for hydraulic modelling with more complex 



8

kvr 051/12  |  attention to safety 2

models. The approach is neither suitable for localised fl ood risk assessments (e.g. street to city 
scale), nor for presenting fl ood risk at the grid-cell level. Rather, the approach is intended to be 
complementary to state-of-the-art methods for use in regional-to-basin scale studies in which 
large numbers of inundation maps are required. More attention is needed to the development of 
relatively simple inundation models. The method developed and applied here is capable of this, but 
refi nements could be added to include the most important physical processes in a simple manner.

Flood risk estimates in a probabilistic framework
Flood damage was calculated using the Damagescanner model, which uses the inundation maps 
from Floodscanner to estimate direct economic damage per inundation scenario. For each climate 
model ensemble member, damage was estimated for all fl ood return periods from 200 to 3000 
years (with a step of 10 years). Flood risk, or expected annual loss, was then estimated as the area 
under the exceedance probability-loss curve (risk curve). A risk curve was developed for the reference 
climate (resampled observations, representative of the period 1961-1995), and also for the future 
climate for each GCM/RCM ensemble member (representative of the period 2081-2100).

The individual estimates of fl ood risk per ensemble member were used to derive probability 
density functions (PDFs) of risk for the RCM ensemble, the GCM ensemble, and the full ensemble 
(i.e. all future GCM and RCM ensemble members combined). We applied a two-parameter gamma 
distribution to the individual risk estimates within each future ensemble, whereby each ensemble 
member was assumed to have an equal likeliness (i.e. no weighting was carried out). Our analyses 
allow us to estimate the probability of future fl ood risk exceeding current risk (given the limitations 
of the study), namely: 92% for the section Bonn-Duisburg and 96% for the section Mainz-Mosel. By 
extension, using such a framework it is possible to assess the probability that fl ood risk will increase 
by any given factor, allowing for the assessment of risk under possible extreme future scenarios.

The range between the maximum and minimum risk estimate is slightly larger in the GCM 
ensemble than in the RCM ensemble for both case-study areas, although the standard deviation is 
smaller. However, the differences between both ensembles are small and may be partly related to 
the difference in ensemble size. The addition of the GCM ensemble to the existing RCM ensemble 
from RheinBlick 2050 leads to an increase in the spread of the PDF, and also leads to a higher 
mean estimate of fl ood risk. Whilst the results show that the RCMs in our ensembles have a major 
impact on the climate, discharge, and risk projections, the analyses do not allow for a more general 
statement of the relative infl uence of RCMs and GCMs on these variables.

Future research
This project presents the fi rst assessment of future fl ood risk under scenarios of climate change 
in a probabilistic framework. It is intended to give a demonstration of the methods that can be 
used in such a framework. The absolute fi gures should be used for qualitative comparison only 
in decision-making at this time. Probabilistic fl ood risk assessments hold promise, but research 
remains to be carried out to: refi ne the methods presented here; examine how the methods can 
be applied to improve adaptation planning; assess how decision-makers use results of probabilistic 
impacts assessments; and to investigate how the information provided can most effectively be 
communicated to stakeholders.
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1 . Introduction

Traditionally, fl ood management has concentrated on providing protection against fl oods through 
technical measures aimed at reducing the probability of fl ooding, such as dikes, river straightening, 
and retention by reservoirs [e.g. Merz et al., 2010a; Vis et al., 2003]. Due to climate change, the 
intensity and/or frequency of fl ooding is projected to increase in the future in many parts of the 
world [IPCC, 2007a]. The same tendency is found for the middle and lower part of the international 
Rhine basin [Görgen et al., 2010]. This means that technical measures of fl ood protection would 
need to be constantly upgraded in order to comply with designated safety standards. Moreover, 
recent studies on trends in losses due to weather-related natural disasters show that the observed 
increases in damage over the last century are, in fact, caused primarily by an increasing exposure 
of population and capital to fl oods [Bouwer, 2010]. Therefore, fl ood management should not only 
aim to reduce the probability of fl ooding, but also to reduce the impacts if a fl ood occurs. Indeed, 
international water management is increasingly shifting towards a more integrated system of fl ood 
risk management [Few, 2003; Merz et al., 2010a; Tunstall et al., 2004], whereby fl ood risk is defi ned 
as the probability of fl ooding multiplied by the potential consequences [Kron, 2005].

In economic terms, fl ood risk can be expressed as the expected annual loss [e.g. Meyer et al., 2009]. 
In order to calculate (potential) fl ood damage (or loss) for a given fl ood event, the most common 
approach involves combining data on the characteristics of the event (hazard) with information on 
the assets that would be exposed to it (exposure), and information about the vulnerability of those 
exposed assets to the particular hazard [e.g. De Moel and Aerts, 2011; Kron, 2005; Merz et al., 2010b]. 
In these studies, hazard is represented by hazard-maps, showing certain fl ood characteristics (per 
grid-cell) related to a particular fl ood, for example inundation depth, fl ow velocity, inundation 
duration, and sediment or contamination load. Exposure is often represented by land use maps, 
whereby each land use class is assigned an economic value per hectare. Finally, vulnerability is most 
commonly represented by depth-damage functions, which show the amount of damage that would 
occur per hectare for each land use class and for different inundation depths [e.g. Merz et al., 2010b].

To date, future fl ood risk assessments have predominantly relied on a discrete scenario-based 
approach [e.g. IPCC, 2007a]. This is not only the case in fl ood risk assessment, but also in climate 
change impact assessments in general. The discrete scenarios approach is useful for exploring 
potential impacts of climate change, but presents problems for assessing the effectiveness of 
adaptation options [New et al., 2007]. Recent research proposes a probabilistic approach, generating 
probability density functions (PDFs) of climate change [e.g. Fowler et al., 2005; Rougier, 2007; Tebaldi 
et al., 2004]. Potentially, large ensembles of General Circulation Model (GCM) and Regional Climate 
Model (RCM) simulations (containing, for example, hundreds of ensemble members), could provide 
more information on risk and uncertainty than using a limited number of discrete scenarios [New et 
al., 2007]. Next to research on probabilistic climate change scenarios, the climate impacts community 
has expressed the need for probabilistic impact assessments [e.g. Pittock et al., 2001; Reilly et al., 
2001; Tebaldi et al., 2004; Webster, 2003]. Examples of probabilistic climate impact studies exist in 
several fi elds, including: global crop yields [Tebaldi and Lobell, 2008]; water resources management 
[Manning et al., 2009; New et al., 2007]; and storm surge impacts [Gaslikova et al., 2011].

In the Netherlands, the project Attention for Safety (AvV) [Aerts et al., 2008], as well as the report of 
the Veerman Commission (www.deltacommissie.com), recommended the development of methods 
for probabilistic fl ood risk assessments. To date, the only probabilistic fl ood risk framework is that 
of Apel et al. [2006], in which a simple stochastic approach allowing a large number of simulations 
in a Monte Carlo framework provided the basis for a probabilistic risk assessment for an area of the 
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Rhine (between Cologne and Rees, with a focus on the polder at Mehrum). However, their study 
only examines probabilistic risk assessments based on current climate observations, and does not 
develop scenarios of fl ood risk under future climate change. In the AvV2 project, we describe such 
an assessment for the fi rst time.

A hindrance to probabilistic fl ood risk modelling is the number of inundation maps required, 
since for each ensemble member and/or scenario, damage estimates must be made for several 
fl ood return periods, each with a different associated inundation depth and extent. Generally, the 
production of fl ood hazard maps is very time-consuming and computationally expensive [Apel et 
al., 2008; Gouldby and Kingston, 2007; Woodhead et al., 2007]. Even relatively simple 1D and coupled 
1D-2D models run on the order of minutes to hours for river-stretches of the order of magnitude 
10-100 km, whilst full 2D or 3D models may take several days [e.g. Woodhead et al., 2007]. Hence, 
inundation mapping models are required that are capable of rapidly simulating inundation extent 
and depth. Ideally, these would also be dynamically coupled to models for estimating the associated 
fl ood damage. In this project, we developed a rapid fl ood inundation model, coupled to an existing 
fl ood damage model.

The estimation of the probabilities (or return periods) of extreme fl ood events is also far from trivial. 
For current climate conditions, frequency analysis is often applied on historical discharge series, 
which requires the extrapolation of fi tted extreme value distributions [Garrett and Müller, 2008]. 
More sophisticated approaches combine weather generators with hydrological models to create 
such long discharge series that extrapolation is redundant. For the Rhine basin, a multi-site weather 
generator has been developed based on non-parametric resampling [Buishand and Brandsma, 2001, 
Wójcik et al., 2000]. This resampling technique has recently been applied to RCM data for the Rhine 
basin in the RheinBlick 2050 project [Görgen et al., 2010].

Ideally, climate model ensembles for probabilistic impact studies should be designed to sample the 
full range of uncertainty. However, in practice they are assembled on an opportunity basis and are 
restricted by limited resources [Kendon et al. 2010]. GCMs are the primary tool for understanding 
how climate variables will change. However, their scale is rather coarse, and hydrological processes 
occur on fi ner scales. Hence, to assess the infl uence of climate change on river fl ows, higher resolution 
data are required. To resolve this scale discrepancy, different downscaling methodologies have been 
developed ranging from statistical techniques to the use of RCMs (see Fowler et al. [2007], Haylock 
et al. [2006], and Maraun et al. [2010]). For the present study, an ensemble of RCM simulations, 
specifi cally resampled for fl ood analysis, was made available through the RheinBlick 2050 project 
[Görgen et al., 2010]. The RheinBlick 2050 ensemble includes four GCMs from three climate modelling 
centres, and six different RCMs. It is assumed that the number of GCMs is determinative for the 
bandwidth of the ensemble. To assess whether this ensemble size is consistent with the spread in a 
larger model ensemble, 12 different GCM simulations have been downscaled using a delta-change 
approach [Lenderink et al., 2007; Prudhomme et al., 2002; Te Linde et al., 2010]. This resulted in the 
largest GCM ensemble used for fl ood probability estimation in the Rhine basin to date.

The main aim of this research is to provide a demonstration of a framework for producing 
probabilistic estimates of fl ood risk, and to demonstrate how ensembles of climate projections can 
be constructed and used for this purpose.
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The main objectives are:
• To generate long resampled time-series of climate variables and discharge for use in probabilistic 

fl ood risk assessments;
• To develop probability density functions of extreme discharge under climate change;
• To develop a rapid inundation model capable of providing the large number of inundation 

maps needed in probabilistic fl ood risk assessments, and to couple this with a fl ood damage 
model;

• To demonstrate the production of fl ood risk estimates in a probabilistic framework.

This report is set up as follows. In Section 2 we describe the study area, followed in Section 3 with 
methods and data used in the project. Section 4 describes the results of a pilot study carried out to 
develop and validate the new inundation model; the pilot study was carried out for the Meuse River 
in Dutch Limburg, since relatively good data are available for model testing and validation. In this 
section we also present a limited validation for the Rhine basin. In Section 5 we present the results 
of the probabilistic fl ood risk analyses for two case-study stretches of the Rhine in Germany, namely: 
Bonn-Duisburg; and Mainz-Koblenz. In Section 6 we discuss the fi ndings, limitations, and future 
research needs, and fi nally we provide conclusions in Section 7.

2. Stud  y area

The research on probabilistic fl ood risk assessment focuses on two case-study stretches of the 
Rhine River in Germany, namely the sections: (a) Bonn-Duisburg; and (b) Mainz-Koblenz (Figure 2.1). 
However, the climate model downscaling and hydrological modelling were carried out for the entire 
Rhine River upstream from Lobith (at the German-Dutch border) to produce the relevant input data 
for future basin-wide studies.

The Rhine originates in the Swiss Alps as a mountain river, fed by glacier water, snowmelt, and 
rainfall. From Switzerland it fl ows through Germany, and the Netherlands into the North Sea. The 
basin has a total catchment area of about 185,000 km2 with a length of 1320 km, making it the 
longest river in Western Europe. The annual mean discharge (1901-2000) at Lobith is 2200 m3s-1. 
The Rhine is one of the most important industrial transport routes in the world [Jonkeren, 2009], 
and about 58 million people inhabit the river basin, of which an estimated 10.5 million live in fl ood-
prone areas [ICPR, 2001]. In Germany, safety-levels of fl ood defences vary from a return period of 200 
to 500 years; in the two case-study stretches discussed in this report, the return period is 200 years.

Many studies have assessed how climate change may alter the discharge regime of sections of 
the River Rhine [e.g. Bronstert et al., 2002; Kwadijk, 1993; Kwadijk and Middelkoop, 1994; Lenderink 
et al., 2007; Menzel et al., 2006; Middelkoop et al., 2001; Shabalova et al., 2003; Te Linde et al., 
2010]. However, only recently has an international study assessed changes in the discharge regime 
over the entire Rhine basin [Görgen et al., 2010]. Using a range of climate change scenarios and 
modelling methods, these studies suggest that mean winter discharge at Lobith (border Germany-
Netherlands; Figure 2.1) may increase by 0 to 30% by 2050, while mean summer discharge may 
change by -45 to +15%. Moreover, the magnitude of extreme fl ood events is generally projected to 
increase. Note that important challenges remain due to large uncertainties in the climate models 
used as well as the robustness of the hydrological models under changing regimes.
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For the Rhine basin, the assessment of current and future fl ood risk is still in its early phases. The 
International Commission for the Protection of the Rhine (ICPR) uses the Rhine Atlas approach to 
estimate aggregated fl ood damage for the whole basin [e.g. ICPR, 2001, 2005], but: (a) it yields rather 
low damage potential values for different land use classes compared to other studies [De Moel and 
Aerts, 2011; Thieken et al., 2008]; and (b) Rhine Atlas does not differentiate between different urban 
classes, whilst such a differentiation is essential for fl ood damage estimates [Apel et al., 2009]. 
Recently, Te Linde et al. [2011] estimated fl ood risk along the River Rhine using the Damagescanner 
model [Klijn et al., 2007; Aerts et al., 2008], but only assessed the damage for one return-period, and 
did not carry out a probabilistic risk analysis. As mentioned in the introduction, Apel et al. [2006] 
developed a simple stochastic approach for probabilistic risk estimates in a section of the Rhine 
between Cologne and Rees, with a focus on the polder at Mehrum.

Figure 2.1.
Map of the two case study sections (in red) 
of the River Rhine.
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3. Me thods

 In this section we discuss the data and methods used in the study. In essence, the overall approach 
can be broken down into the following steps:
• Generating long (3000-year) climate time-series;
• Generating long (3000-year) discharge time-series;
• Estimating discharge values for low probability fl ood events;
• Simulating fl ood inundation extent and depths;
• Estimating fl ood damage;
• Estimating fl ood risk and probability distributions of fl ood risk.

In the rest of this section we describe each of the methodological steps in detail.

3.1 Generating long (3000-year) climate time-series

For this research, bias-corrected, resampled time-series of 3000 years from an ensemble of six RCM 
simulations were made available through the RheinBlick 2050 project [Görgen et al. 2010]. Five of 
these simulations were carried out in the framework of the EU ENSEMBLES project [Van der Linden 
and Mitchell 2009]. Some of these RCM simulations were nested in different versions or runs of 
the same GCM. In order to enlarge the number of GCMs in our ensemble, 12 GCM simulations run 
in the context of the 3rd Coupled Model Intercomparison Project (CMIP3) were downscaled using an 
advanced delta-change approach. The models used are listed in the results table, Table 5.1. For this 
study, a delta-change approach was considered preferable to a dynamical downscaling technique 
since the latter is computationally intensive. Downscaling with the delta-change approach on the 
other hand is comparatively cheap and is able to incorporate observations into the method. We used 
an advanced method to account for the changes in extreme rainfall and temperature variability, 
and not just changes in the mean (see Section 3.1.1). Note that the potential evapotranspiration is 
calculated based on temperature within the hydrological model (Section 3.2).

The GCM simulations used were all driven by the Intergovernmental Panel on Climate Change (IPCC) 
Special Report on Emission Scenarios (SRES) A1B emission scenario. Since the aim of this project is 
to demonstrate methods and framework that can be used in probabilistic fl ood risk assessment, 
we only used one scenario for demonstrative purposes; of the IPCC SRES scenarios the A1B scenario 
has the most model runs available. We selected daily data from the GCMs for a control period of 
35 years (1961-1995) and a future period of 20 years (2081-2100). Observations of precipitation and 
temperature from the International Commission for the Hydrology of the Rhine basin (CHR) were 
used, which contain area-averaged daily precipitation and temperature for 134 sub-basins of the 
Rhine, for the period 1961-1995. These short (35-year) time-series were resampled to produce long 
(3000-year) time-series. An advanced delta method was applied to transform the resampled data 
for each of the 134 sub-basins of the HBV-96 hydrological model in accordance with the changes in 
the GCM output. The transformation is discussed fi rst in Section 3.1.1, and the time-series resampling 
is described in Section 3.1.2.

3.1.1  Delta- change approach
Applying a delta method essentially involves transforming observed data such that the changes 
correspond to those derived from the GCM control and future run. The main points of the delta 
method used in this study are presented below [see also Van Pelt et al., 2011a; 2011b; in prep.].
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3.1.1.1 Precipitation
Firstly, non-overlapping observed 5-day average precipitation amounts over the GCM grid-cells were 
transformed, using the non-linear formula introduced by Leander and Buishand [2007]:

     (1)

where, a and b are empirically derived coeffi cients to scale the observed precipitation (P) to a 
future precipitation (P*). Change factors were then applied to disaggregate the transformed 5-day 
precipitation over the GCM grid-cell to daily values over the 134 HBV-96 sub-basins. An overview 
of the transformation process can be found in Figure 3.1. The coeffi cients a and b in equation (1) are 
derived from the 60% quantile (P60) and the 95% quantile (P95) of the 5-day precipitation sums. Both 
quantiles are calculated for the control (C) run (1961-1995) and future (F) run (2081-2100) of the GCM 
precipitation output:

   (2)

   (3)

    (4)

    (5)

The quantities g1 and g2 are bias correction factors for the quantiles P60 and P95, respectively. The 
superscript O refers to the observations.

Equation (1) is applied to the observed values for which P ≤ P95. For larger values of P, this equation 
may result in very high and unrealistic precipitation values, when exponent b is larger than 1. The 
transformation (1) is also not fl exible enough to reproduce changes in the extremes adequately. The 
latter can be improved by taking into account the change in the mean precipitation of all events 
> P95, referred to as the excesses E= P- P95 of the exceedances of P95. The mean excess for the control 
and future period is defi ned as: 

   
and

     (6)
where nC and nF  are the numbers of 5-day periods during which the 95% quantile is exceeded in 
the control and future run, respectively. The mean control- and future excess are used to rescale the 
observations P that exceed P95:

 (7)
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Figure 3.1.
Overview of the climate downscaling methodology. Panel 1 shows the Rhine basin, divided into eight (GCM) 
grid-cells and 134 sub-basins. Panel 2 shows the mean precipitation over a 5-day period in each grid-cell for 
the observations and the two GCM runs, all on grid-cell level. The observations are upscaled to grid-cell level 
by taking a weighted average over the sub-basins. In panel 3 the probability density of 5-day precipitation is 
shown, with the 60% quantile (P60) and the 95% (P95) quantile (both for the observations and GCM runs). Also 
the excess, i.e. the amount of precipitation above the 95% quantile, is shown for the control and the future 
model run. Panel 4 displays the transformation. The daily observations in each sub-basin are multiplied by the 
change factor R, which is obtained from the observed (P) and transformed (P*) 5-day precipitation amount and 
depends on the coeffi cients a and b and for P > P95 also on EF/EC. For each sub-basin the daily precipitation is 
transformed using the GCM signal from the grid-cell that contains most of its surface area.
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The 12 monthly estimates of the quantiles P60 and P95  are smoothed using a weight of 0.5 on the 
month of interest and a weight of 0.25 on the previous and next month. Then, equation (3) is applied 
to obtain monthly estimates of b, and the median of these estimates over the eight grid-cells for 
each month is taken as the value of b in equations (1) and (7). With these fi nal estimates of b, the 
values of a are determined using equation (2). The mean excesses EC and EF are smoothed both in 
time in the same way as the quantiles P60 and P95, and then the median of their relative changes over 
the eight grid-cells is taken for each month.

3.1.1.1 Temperature
Observed daily temperature was transformed for each sub-basin taking into account the changes in 
the mean and standard deviation of the daily temperatures from the GCM simulation:

   (8)

where  are the mean and standard deviation of the future daily temperature series and

 are the mean and standard deviation of the control daily temperature series.

3.1.2  Resampling
To estimate extreme quantiles of the distributions of precipitation sums and river discharges, we 
generated 3000-year synthetic sequences of daily precipitation and temperature by resampling 
from the historical observations for the 35-year period. These series were then transformed to future 
time-series with the delta-change approach, as described in Section 3.1.1. The method of time-series 
resampling of meteorological variables in the Rhine basin was originally developed as part of a new 
methodology to determine the design discharge for fl ood protection in the Netherlands [Buishand 
and Brandsma, 2001; Wójcik et al., 2000]. Nearest-neighbour resampling, as originally proposed 
by Young [1994], is used to reproduce temporal correlation. Daily precipitation and temperature 
at different locations in the river basin are sampled simultaneously with replacement from the 
historical data to preserve their mutual dependencies. The resampling algorithm in this study, 
which can be regarded as a weather generator, is the same as that used in the RheinBlick 2050 
project [Görgen et al., 2010].

3.2 Generating long (3000-year) discharge time-series

The hydrological model used to generate the daily discharge time-series is the HBV-96 model for 
the Rhine. It is a conceptual model divided into 134 sub-basins for the entire Rhine basin upstream 
from Lobith, and has a daily time-step. HBV-96 calculates daily potential evapotranspiration by 
applying a temperature anomaly correction to the long term mean monthly (historical) potential 
evapotranspiration. The ‘robustness’ under future climate change of the HBV-96 model is a source 
of uncertainty as structural changes may occur in the river basin (soil, vegetation, etc.) and empirical 
parameter values and relations may change in the future. Further details of the applied model can 
be found in Görgen et al. [2010]. Note that activities are currently being undertaken by Deltares and 
the German Federal Institute of Hydrology (BfG), in cooperation with the Waterdienst, to re-calibrate 
the HBV-96 model. The main reasons are to create more transparency in the model’s structure, as 
well as to make use of a newly available climate reference dataset that covers a longer period. It is 
important to mention that no hydrodynamic modelling was performed, so the effects of upstream 
fl ooding on discharge downstream are not considered.
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The hydrological model was forced with the 3000-year time-series for the 12 GCM simulations and 
six RCM simulations described above. The future simulations refer to the period 2081-2100, whilst 
the reference period is 1961-1995. As described above, the GCM climate time-series were generated 
by applying the advanced delta-change approach to the resampled CHR dataset (consequently 
this resampled dataset is the reference time-series for each GCM) whilst the RCM climate time-
series were constructed by applying a non-linear bias-correction (based on the CHR dataset) to the 
resampled RCM data (i.e. each future RCM simulation has its own corresponding control simulation). 
A validation of discharge computed from the bias-corrected control RCM simulations was applied 
by comparing discharge values calculated with the CHR data as input by Görgen et al. [2010]. For the 
middle and lower part of the Rhine basin, which are part of this case study, the extreme discharges 
from these simulations reproduced observed fl ood statistics well.

3.3 Estimating discharge values for low probability fl ood events

The river stretches of the Rhine considered in this study are protected by dikes with a protection 
level against fl oods with a return period of approximately 200 years. Hence, we only considered 
discharge events with a return period in excess of 200 years for the inundation scenarios and 
damage estimates. As previously described, for each GCM or RCM ensemble member, a 3000-
year discharge time-series was generated using HBV-96. From the discharge time-series we took 
the maximum discharge for each hydrological year (November to October), resulting in 2999 
annual discharge maxima per ensemble member. We then estimated extreme discharge using 
the Weissman approach [Boos, 1984; Weissman, 1978], whereby a joint limiting distribution of the 
largest order statistics is fi tted to the highest 0.5% of the data values. This method provides more 
consistent results than the Generalized Extreme Value (GEV) distribution fi tted to the whole data 
series [Görgen et al., 2010].

3.4 Simul ating fl ood inundation extent and depths

The methodological framework used in this study requires the simulation of hundreds to thousands 
of inundation maps showing inundation extent and depth. For detailed fl ood risk analyses, 
inundation maps at a high resolution are required from state-of-the-art methods describing the 
detailed hydrodynamics of the study area [e.g. Ernst et al., 2010]. However, given the large number 
of simulations needed for our probabilistic framework, we developed a new model, Floodscanner. 
We used the zero-dimensional planar-based approach, conceptually similar to that described in 
Priestnall et al. [2000]. The model’s setup and development is described in detail in Ward et al. [2011a; 
2011b]. The model’s performance was fi rst tested and validated for a section of the Meuse River in 
Dutch Limburg, since relatively good data are available for validation in this river section (e.g. from 
aerial photography and hydrodynamic modelling using the WAQUA model). This validation, and a  
validation for the Rhine, are described in Section 4.

Floodscanner is raster-based, with a spatial resolution of 50 m x 50 m. In brief, the method uses 
stage-discharge relationships to estimate the water level at each river grid-cell within the case-
study region, for different discharges. These water levels are then assigned to the nearest non-river 
grid-cells, essentially creating a planar surface representing the water level per grid-cell. This planar 
water level is then intersected with a Digital Elevation Model (DEM), and the inundation depth is 
the difference between the cell values of water level and elevation. Several steps are required to 
carry out the simulation: (a) derive river network raster; (b) develop stage-discharge relationships; 
(c) simulate planar water level surface; and (d) estimate fl ood inundation depth. These steps, 
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and the data sources used in this study, are described in the following paragraphs. Note that no 
hydrodynamic modelling was performed, so the effects of upstream fl ooding on inundation depth 
downstream are not considered.

a) Derive river network raster: We extracted the river network raster from the SRTM DEM [Jarvis et al., 
2006], available from http://srtm.csi.cgiar.org. The DEM has a horizontal resolution of 90 m x 90 m, 
and was regridded to a higher resolution of 50 m x 50 m. Ideally, a higher resolution DEM would be 
used, such as a DEM derived from TIN height map used in the WAQUA model of the Rhine basin. 
Unfortunately, these data were not available for use in this study.

b) Develop stage-discharge relationships: Stage-discharge (h-Q) relationships show the relationship 
between river stage (h) at a given point and discharge (Q) at that or another point; they can either be 
observed or derived from models. For a review on the use of h-Q relationships, the reader is referred 
to Braca [2008]. For this study we used relationships derived from the SOBEK model described by 
Te Linde et al. [2010; 2011]. The data from SOBEK show the river stage corresponding to 30 discharge 
values. These data are available at irregular distances along the river, but ranging from ca. 0.5 km 
to 1.0 km. Floodscanner fi rst assigns these values to the correct river grid-cell in the river network 
raster, and then estimates values for each intervening river cell through linear interpolation. For 
each river cell, an h-Q relationship is then derived in the form:
h = aQb    (9)

where h is the water level (m.a.s.l. NAP), Q is the discharge, and a and b are coeffi cients empirically 
derived from the data described above.

c) Simulate planar water level surface: For the two sections studied in this research, i.e. Bonn-Duisburg 
and Mainz-Koblenz, the discharges at Cologne and Kaub respectively are given to the model as 
input. The model then estimates the corresponding water level at each river grid-cell based on the 
h-Q relationships. All grid-cells in the study area are assigned to their nearest river grid-cell based 
on the Euclidean distance. This results in a theoretical planar water-level surface for the entire case 
study area.

d) Estimate fl ood inundation depth: The elevation of each grid-cell is subtracted from the planar water 
level surface, to give a theoretical inundation depth per grid-cell. However, this results in cells being 
inundated where there is no fl ow connection with the river. Hence, we removed inundated cells not 
connected to the river via a fl ow-path with direct connectivity (in at least one of 8 directions).

3.5 Estimating fl ood damage

We calculated potential direct economic damage for each inundation scenario using the 
Damagescanner model [Klijn et al., 2007]. Damagescanner has been described in several studies [e.g. 
Aerts and Botzen, 2011; Aerts et al., 2008; Bouwer et al., 2009, 2010; Te Linde et al., 2011], so we only 
provide a brief overview here. Damagescanner needs two inputs: a land use map and an inundation 
map. The land use map (for the year 2000) is derived from the Landuse scanner model [Hilferink and 
Rietveld, 1999] for the Rhine described in detail by Te Linde et al. [2011]. The inundation maps were 
derived from Floodscanner. Damagescanner combines information on land use and inundation 
depth using depth-damage functions, which estimate the expected damage for a given inundation 
depth (x-axis) and a given land use (different curves) for each grid-cell; the depth-damage functions 
used by Damagescanner are shown in Figure 3.2.
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Figure 3.2.
Depth-damage functions used in the Damagescanner model.

3.6 Estimating fl ood risk and probability distributions of fl ood risk

Economic fl ood risk, or expected annual loss, can be considered as the area under an exceedance 
probability-loss curve (risk curve); a theoretical risk curve is shown in Figure 3.3. In practice, the 
number of exceedance probabilities used to develop such a curve is limited by available computer 
and manpower resources; for example in Figure 3.3, loss has been calculated for three exceedance 
probabilities, and the curve interpolated based on points. However, research carried out as part 
of this project by Ward et al. [2011a; 2011b] has shown that estimates of fl ood risk are strongly 
affected by the choice of exceedance probabilities used to develop the risk curve. We assessed 
losses associated with return periods between 200 and 3000 years (i.e. exceedance probabilities 
between 0.005 and 0.00033), with a step of 10 years. A risk curve was developed for the reference 
climate (resampled CHR-dataset, corresponding to 1961-1995), and also for the future climate for 
each GCM/RCM ensemble member (corresponding to the late 21st century, ca. 2081-2100). The strict 
deadlines of the project prevented the development of risk curves for the control RCM time-series to 
account for remaining biases in extreme events in the RCM ensemble. Risk was calculated for each 
ensemble member as the area under the risk curve approximated using the trapezoidal rule [e.g. 
Meyer et al., 2009]. The change in risk between current and future conditions was calculated for 
each ensemble member in relation to risk estimate for the CHR reference dataset. In a fi nal step, we 
fi tted PDFs to the estimates of risk from each of the climate model simulations, in order to produce 
the probabilistic risk assessment, and to demonstrate the location of the current risk within this 
PDF.
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Figure 3.3.
Theoretical exceedance probability-loss (risk) curve; the area under the curve (in grey) represents the risk, 
expressed as the expected annual loss.

4. Floodscanner: validating the fi rst setup

4.1 Initial setup and validation for the Meuse in Dutch Limburg

As part of this study, and also as part of the Knowledge for Climate study HSGR06, we fi rst setup 
and validated the Floodscanner approach for the Meuse River in Dutch Limburg. One of the reasons 
for selecting this area is that relatively good data are available for model validation. The model was 
then coupled with the existing Damagescanner model. The setup and validation are described in 
detail in Ward et al. [2011a; 2011b]; these publications also assess how estimates of risk are affected 
by the selection of return periods (which ones and how many) used to estimate the risk.

Floodscanner was set up for the Meuse basin, following the method described in Section 3.4. 
However, different data sources were used since this is a different river and case-study area. These 
are summarised below:

DEM: derived from elevation data used in the WAQUA model of the Meuse (WAQUA-version 2005-
02, confi guration J09_4). For areas outside the WAQUA confi guration we used the AHN5 (Actueel 
Hoogtebestand Nederland) DEM, which covers the Netherlands at a resolution of 5 m x 5 m. Again, 
this DEM was regridded to a resolution of 50 m x 50 m.

h-Q relationships: derived from Meuse WAQUA schematisation J09_4, supplied by RWS Limburg.
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To verify the quality of the method in producing inundation maps usable in studies of fl ood damage 
and risk, we compared: (a) our inundation extent maps with observed inundation extents for the 
fl oods of 1993 and 1995; and (b) our inundation depth maps with those produced using the process-
based 2D hydrodynamic model WAQUA. These maps were provided by Rijkswaterstaat Limburg 
(RWS Limburg): Rijkswaterstaat is the executive arm of the Dutch Ministry of Infrastructure and the 
Environment.

Maps showing the extent of the inundated area during the fl oods of 1993 and 1995, based on aerial 
photography and satellite imagery, were provided by RWS Limburg; these fl oods were associated 
with discharges at Borgharen of 3120 m3s-1 and 2861 m3s-1  [Wind et al., 1999], corresponding to 
return periods of ca. 160 and 77 years respectively. Hence, we used these discharge values to force 
Floodscanner and to derive modelled inundation maps. The observed and modelled fl ood events 
were then compared; the results are shown in Figure 4.1.

Figure 4.1.
Inundation extent maps based on aerial photography and satellite imagery (observed) and Floodscanner 
(modelled) for the fl oods of 1993 and 1995. Blue circles show the confl uence of the Niers and Meuse rivers; red 
circles show the lake known as the Lange Vlieter, completed post-1995.

In Table 4.1 we show the number of cells inundated in the observed datasets only, the modelled 
datasets only, and the number of cells inundated in both datasets. The agreement between the 
datasets is good. Reference to the maps (Figure 4.1) shows only a few locations with large differences. 
For example, the modelled maps show an inundation area at the confl uence of the Niers tributary 
and the Meuse (blue circles). Clearly, the simple inundation model has diffi culty in dealing with 
hydraulically complicated backwater effects. A second source of anomalies is around several of 
the new ‘Maasplassen’; these lakes were created by sand and gravel mining, and some were not 
completed until after 1995 (e.g. the Lange Vlieter, shown by red circles in Figure 4.2). Hence, these 
lakes are ‘inundated’ in our model (which represents the current situation), but were not inundated 
in 1993 and 1995 because at that time the gravel and sands had not been extracted.
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Table 4.1
Numb er of inundated cells in the observed dataset only, the modelled dataset only, and number of cells that 
are inundated in both datasets.

Number of inundated cells
Year Observed dataset only Modelled dataset only Both datasets
1993 48867 53291 47497
1995 47639 51982 46511

Next, we compared inundation depths per grid-cell for several return periods (2, 5, 20, 75, 250, and 
1250 years) between the maps produced using Floodscanner and those produced by WAQUA. The 
discharge at Borgharen associated with each return period was estimated using the standard 
formulae provided in the offi cial Dutch HR2001 guidelines [Van de Langemheen and Berger, 2001]. 
The depth differences per grid-cell (Floodscanner minus WAQUA) are shown in Figure 4.2. As the 
return period increases, so too does the spread between the two datasets. The fi gures show that 
Floodscanner overestimates inundation depths at very low return periods (2 years), has little bias 
at medium return periods (up to 20 years) and slightly underestimates inundation depths at high 
return periods (from 75 years upwards) with respect to the WAQUA estimates. Overall, for the return 
periods shown, the difference is ≤ 0.5 m for 71% (RP = 1250 years) to 93% (RP = 75 years) of the cells; 
and the difference is ≤1 m for 91% (RP = 1250 years) to 97% (RP = 10 years) of the cells. Research carried 
out by De Moel and Aerts [2011] in the Netherlands shows that an overall change in inundation level 
by 0.5 m (in all grid-cells) may lead to a change in damage by a factor of 1.35-1.44, whilst an overall 
change in inundation level by 1 m (in all grid-cells) leads to a change in damage by a factor of ca. 2. 
Hence, Floodscanner performed reasonably well compared to the historical fl oods of 1993 and 1995, 
as well as compared to results from a 2D hydrodynamic model (WAQUA).

Figure 4.2.
Frequency distributions (%) of the differences between the inundation depth (in metres) per grid-cell in the 
inundation maps produced using Floodscanner WAQUA (Floodscanner minus WAQUA). The depth differences 
were only calculated for cells that were inundated in the Floodscanner model (i.e. non-inundated cells are not 
used in the calculation): the frequency bins have an interval of 10 cm, centred on 0 m.
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4.2 Initial validation for the Rhine

A recurring problem in fl ood risk assessment is the poor availability of high-resolution observed 
inundation data, making verifi cation diffi cult (Merz et al. 2010). For the Rhine basin, we were 
therefore only able to carry out a limited validation. The only publicly available inundation maps 
of the German Rhine are those developed for the Rhine Atlas (ICPR 2001). This dataset shows the 
potential fl ooded area in the Rhine basin at different fl ood return periods (10 years, 100 years, and 
‘extreme’). The ‘extreme’ inundation map, however, does not have a probability estimate; rather 
it assumes that all potentially fl ood-prone areas are inundated completely. We compared our 
simulated inundation depths for a return period of 1250 years with those in the extreme inundation 
map of the Rhine Atlas. Depth anomalies per grid-cell (Floodscanner minus Rhine Atlas) are shown 
in Figure 4.3. Overall, the difference is ≤1.0 m for 51% (Bonn-Duisburg) and 41% (Mainz-Koblenz) 
of the cells. A study by the (Dutch) Ministry of Transport, Public Works and Water Management 
et al. (2004) used the 2D-hydrodynamic model DelftFLS to simulate inundation depths for several 
scenarios corresponding to a fl ood return period of 1000 years for the lower Rhine in Germany. 
Unfortunately, these maps were only made available in paper format; the GIS maps are not available 
for research activities. However, visual inspection shows the inundation extents in the latter to be 
much smaller than in the Rhine Atlas. Thus, for this demonstration study of a probabilistic fl ood 
framework, our estimates are of suffi cient accuracy to give meaningful results.

Figure 4.3.
Frequency distributions (%) of the differences between the inundation depth (in metres) per grid-cell in the 
Floodscanner inundation maps (return period 1250 years) and the Rhine Atlas ‘extreme’ scenario. The depth 
differences were only calculated for cells that were inundated in the Floodscanner model (i.e. non-inundated 
cells are not used in the calculation): the frequency bins have an interval of 25cm, centred on 0 m.



24

kvr 051/12  |  attention to safety 2

5. Prob abilistic fl ood risk estimates for the Rhine

5.1 Precipitation extremes for GCM simulations

High river discharge and fl oods in the middle to lower part of the Rhine basin are often associated 
with multi-day extreme precipitation in the winter season [Beersma et al., 2001]. Therefore, to assess 
possible future changes in the occurrence of such multi-day extreme precipitation, we compared 
the winter half-year (Oct-Mar) maximum 10-day precipitation sums of the transformed (resampled) 
time-series (representative of future conditions in a GCM simulation) with those in the (resampled) 
observed time-series (Figure 5.1). The fi gure shows Gumbel plots of the winter half-year maximum 
10-day precipitation sums for the short time-series (35-year) (left panel) and for the long time-
series (3000-year) based on resampling (right panel). The precipitation is averaged over all sub-
basins in the Rhine basin upstream from Lobith. Both panels refer to the largest 10-day precipitation 
amounts in the winter half-year. Although the spread between the GCMs increases with longer 
return periods, the range between the GCMs varies between almost no change compared to the 
reference observations, to an increase of ca. 35 %; this is the case in both the 35-year and 3000-year 
time-series.

Figure 5.1.
Gumbel plots of winter half-year maximum 10-day basin-average precipitation sums for short time-series of 
transformed observations (35 years; left) and long time-series of transformed resampled observations (3000 
years; right). The black line shows the ordered 10-day maxima in the (resampled) CHR reference dataset; the 
grey lines represent the individual GCM ensemble members; and the coloured lines denote the GCM ensemble 
members generating the lowest and highest precipitation sums.

5.2 Range of quantiles of the maximum 10 day precipitation sum 
 for the GCM and RCM ensembles

Figure 5.2 shows the range in the quantiles of the winter half-year maximum 10-day basin-average 
precipitation sum for different return periods, derived from the RCM and GCM ensembles. For the 
RCM ensemble, the quantiles for the control and future periods are shown. For the GCM ensemble, 
the estimated quantiles from the resampled observations are shown as a reference, together with 
the range of the estimated quantiles for the transformed resampled observations for the future 
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period. The GCM ensemble shows higher quantiles of winter half-year maximum 10-day basin-
average precipitation sums than in the RCM future ensemble for each return period, while the RCM 
control ensemble is fairly consistent with the observations (due to the bias correction applied to 
the RCM data). This means that the GCM ensemble shows a larger change in quantiles of extreme 
precipitation sums compared to the RCM ensemble. The spread within the ensembles is roughly 
similar, except at short return periods, where the spread of the RCM ensemble is slightly larger.

Figure 5.2.
The winter half-year maximum 10-day basin-average precipitation sum for four return periods generated 
with the RCM and GCM ensembles. Each box-plot contains the median, the 25th and 75th percentiles, and 
the smallest and largest values (the whiskers) for the given return period for all members of the RCM or GCM 
ensemble. For the observations there is only one estimate.

5.3 Discharge extremes

In order to assess possible future changes in discharge compared to present day, Figure 5.3 shows 
the mean annual maximum discharge (MHQ) and the 200- and 1000-year discharges (HQ200 
and HQ1000 respectively) at Lobith, Cologne, and Kaub. Also the reference values for the 1961-1995 
period are indicated based on the CHR dataset. A thorough analysis of the reference values resulting 
from the CHR dataset (as well as the control runs of each RCM) is described in Görgen et al. [2010].

In general, the (resampled) time-series indicative of future conditions tend to show an increase 
in the estimated quantiles of average and extreme discharge compared to the (resampled) CHR 
reference dataset. These increases are generally greater for the GCM ensemble compared to the 
RCM ensemble, although the relative difference between the two ensembles is less than that seen 
for extreme 10-day precipitation sums in Figure 5.2. This indicates a non-linearity in the process of 
transforming precipitation to discharge.

Still, there are also several ensemble members that do project a decrease in fl ood discharges 
(ECHAM GCM, and ARPEGE-HIRHAM5 and ECHAM-REMO 10km RCMs for the 200 and 1000 year 
return periods at Cologne and Lobith; and the HADCM3Q0-CLM and ECHAM-REMO 10km RCMs for 
the 1000 year return period at Kaub).
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Figure 5.3.
Plots for (a) Lobith, (b) Cologne, and (c) Kaub, of projected: 
mean annual maximum discharge (MHQ); and 200- 
and 1000-year discharges (HQ200 and HQ1000). GCM 
members are shown in red, and RCM members in blue 
(both representing future conditions). The black lines 
denote the discharge for the CHR reference dataset 
(1961-1995). All values based on resampled 3000-year 
time-series. For MHQ, the bandwidth of the RCM 
ensemble is larger than that of the GCM ensemble, 
despite the fact that the latter ensemble contains 
twice as many members. For HQ200 and HQ1000 the 
bandwidths are similar at both Lobith and Cologne, as 
was the case between the ensembles for precipitation. 
However, the bandwidth of the GCM ensemble is 
slightly larger than that of the GCM ensemble at Kaub.

At Kaub, the highest HQ1000 is for the MIUB GCM, whereas at Cologne and Lobith the HADCM3Q0 
GCM is the highest. The MIUB GCM simulates much wetter conditions in the river basin upstream 
from Kaub, whilst the HADCM3Q0 GCM simulates the wettest conditions in the lower part of the 
basin and the Mosel river basin. It is noteworthy that whilst the HADCM3Q0 GCM simulates very 
wet conditions, the RCM simulation HADCM3Q0-CLM (i.e. the CLM RCM forced by the HADCM3Q0 
GCM) is one of driest simulations. Hence, the RCMs have a large infl uence on the results of the 
climate projections.

5.4 Meteorological indicators of extreme discharge

Previous analyses by Leander et al. [2008] for the Meuse have shown that changes in the distribution 
of extreme discharges strongly depend on changes in average winter half-year precipitation and the 
coeffi cient of variation of 10-day precipitation in the winter half-year. This suggests a relationship 
between changes in the quantiles of extreme discharge and changes in the corresponding quantiles 
of the winter half-year maximum 10-day precipitation sum. In Figure 5.4 we test this relationship for 
the Rhine basin, by plotting the relative changes in discharge at Lobith with a return period of 200 



27

kvr 051/12  |  attention to safety 2

years versus relative changes in the winter half-year maximum 10-day basin-averaged precipitation 
sum with a return period of 200 years. Each point in the graph represents one ensemble member 
of either the RCM ensemble (blue) or the GCM ensemble (red). The same analysis was applied for 
10 and 1000 year return periods, and different seasonal defi nitions, but the results were similar. The 
winter half-year maximum 10-day precipitation sum is shown to be a fairly accurate predictor of 
changes in the peak discharge regime. Including temperature of the Alpine grids (indicative of snow 
melt) in the analysis did not lead to improved predictions of the changes in extreme discharges.

Figure 5.4.
Relative change in the 200-year discharge at Lobith compared to the relative change in the 200-year 10-day 
basin-average precipitation. Each symbol represents one GCM or RCM (red: GCMs, blue: RCMs).

5.5 Extreme discharge probability distributions

So far we have presented the results of the individual members of the RCM and GCM ensembles. 
However, one of the main aims of this research is to provide a demonstration of a framework for 
producing probabilistic estimates of fl ood risk. Before assessing the risk in a probabilistic framework, 
we fi rst present PDFs of the extreme discharge results. Figure 5.5 shows PDFs for the RCM and GCM 
ensembles, based on the normal distribution (for Lobith, Cologne, and Kaub). The normal distribution 
does not necessarily give the best fi t to the data, but considering the low number of ensemble 
members it is used as a demonstration of how probabilistic assessments of fl ood scenarios can be 
developed. In this case the PDFs are given for discharge with a return period of 1000 years (HQ1000). 
The HQ1000 for the CHR reference dataset is shown by the black line. The GCM ensemble is based 
on transformed resampled CHR data conform to the changes in the GCM simulations; the RCM 
ensemble is based on the individual future RCM ensemble members.
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Figure 5.5.
PDFs of HQ1000 at: (a) Lobith, (b) Cologne, and (c) 
Kaub. As the number of ensemble members is limited 
the normal distribution used is only demonstrative. 
The black line shows the 1000 year fl ow for the 
resampled CHR reference dataset (as resulting from 
our hydrological simulations) for current climate 
conditions.

5.6 From extreme discharge to risk

The next step in our research was to derive fl ood risk estimates based on the climate model 
downscaling and hydrological simulations. As described in Section 3.6, the risk was estimated as 
the area under an exceedance probability-loss curve, using the trapezoidal rule. A risk curve was 
developed for each (future) RCM and GCM ensemble member and for the CHR reference dataset, 
using damage estimates with return periods between 200 and 3000 years (i.e. exceedance 
probabilities between 0.005 and 0.00033), with a step of 10 years. We assumed that no damage 
occurs at fl ood return periods shorter than 200 years, due to safety measures designed for this 
return period. We also estimated the risk by simply summing the modelled damage associated with 
the top-15 discharge events per ensemble member (i.e. those with a return period of 200 years or 
longer), and dividing this by 3000 (years); this led to very similar results. Hence, the results shown in 
this section are those obtained by estimating the area under the risk curve.
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The risk curves for each ensemble member (RCMs in blue; GCMs in red) and for the CHR reference 
dataset (black solid line) are shown in Figure 5.6. Again, the GCM ensemble is based on transformed 
resampled CHR data for each GCM simulation; the RCM ensemble is based on the individual future 
RCM ensemble members. In Table 5.1, several key statistics referring to each ensemble (RCM, GCM, 
full ensemble) are listed. The range between the maximum and minimum risk estimate is slightly 
larger in the GCM ensemble than in the RCM ensemble for both case-study areas, although the 
standard deviation is smaller. However, the differences between both ensembles are small and may 
be partly related to the difference in ensemble size. Nevertheless, the mean risk is higher for the 
GCM ensemble compared to the RCM ensemble for both the sections Bonn-Duisburg and Mainz-
Koblenz.

Figure 5.6.
Risk curves for Bonn-Duisburg (left) and Mainz-Koblenz (right). The solid black line shows the risk curve for the 
CHR reference dataset. Risk curves for the future RCM ensemble members are shown in blue, and for the future 
GCM ensemble members are shown in red. The black dashed lines show the average and the 5% and 95% 
percentiles of a two-parameter gamma distribution fi tted to all members of the full future model ensemble.

Table 5.1.
Key statistics related to the (future) annual risk (€ million) for the two case-study regions for the RCM ensemble, 
the GCM ensemble, and the full ensemble. For comparison, risk for the reference simulation is € 60.3 million 
for Bonn-Duisburg and € 5.1 million for Mainz-Koblenz.

Bonn-Duisburg Mainz-Koblenz
RCM 

ensemble
GCM 

ensemble
Full 

ensemble
RCM 

ensemble
GCM 

ensemble
Full 

ensemble
Maximum 145.9 170.4 170.4 9.0 10.0 10.0
Minimum 42.6 54.2 42.6 5.0 5.1 5.0
Range 103.3 116.2 127.7 4.0 4.9 5.0
Mean 85.1 121.0 109.1 6.7 8.1 7.7
St. dev. 35.1 31.6 36.3 1.7 1.4 1.6

The results are shown for each ensemble member in Table 5.2. Next to total annual risk (based on 
damage to all land use categories), we also show risk per capita for residential losses only (residential 
risk per capita). To do this, we calculated the expected annual loss (risk) based only on the damage 
estimates for residential grid cells (high and low density). We then divided this by the number of 
people living in the area exposed to the 3000-year return period fl ood. The latter was estimated 
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using LandScan2008TM data [LandScan, 2008]. Such information could be of use when calculating 
insurance premiums for private households. Interestingly, whilst the total annual risk is higher for 
the section Bonn-Duisburg – since the inundation extent in this area is much larger and the area is 
more urbanised – the annual residential risk per capita in the former is lower.

The highest risk is simulated for Bonn-Duisburg by the HADCM3Q0 GCM, and for Mainz-Koblenz 
by the MIUB GCM. This is consistent with the extreme discharge results (HQ1000), for which these 
models resulted in the highest values at Cologne and Kaub respectively. The lowest risk is simulated 
by the ECHAM5R1-REMO RCM and the HADCM3Q0-CLM RCM for Bonn-Duisburg and Mainz-Koblenz 
respectively.

5.7 Probabilistic fl ood risk estimates

The fi nal step in the analyses is the presentation of a probabilistic scenario of future fl ood risk, 
demonstrating how this approach could be further developed in the future as more and more 
tailor-made probabilistic climate change scenarios become available. The probabilistic future fl ood 
scenario consists of a PDF of future risk, based on the individual ensemble members. We applied a 
two-parameter gamma distribution to the individual risk estimates within each future ensemble 
(RCM, GCM, and full ensemble), whereby each ensemble member was assumed to have an equal 
likeliness (i.e. no weighting was carried out). We assumed a two-parameter gamma distribution, 
since this is left-bounded to zero (i.e. no negative risk can be predicted) and is frequently used 
in risk analysis. The resulting probabilistic fl ood risk scenarios can be found in Figure 5.7, and the 
average and 5% and 95% percentiles of the gamma distribution are also shown on the risk curves in 
Figure 5.6.

Figure 5.7 shows that the addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to an increase in the spread of the PDF, and also leads to a higher mean 
estimate of fl ood risk. For the section Bonn-Duisburg, two ensemble members of the full ensemble 
fall below the 5% percentile of the distribution (ECHAM5R1-REMO; ECHAM5). For the section 
Mainz-Koblenz, three ensemble members of the full ensemble fall below the 5% percentile of the 
distribution (HADCM3Q0-CLM; ECHAM5R1-REMO; ECHAM5).
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Table 5.2.
Annual risk and annual residential risk per capita for the two case-study regions.

Bonn-Duisburg Mainz-Koblenz
Climate simulation Annual risk 

(€)
Annual residential 
risk per capita (€)

Annual risk 
(€)

Annual residential 
risk per capita (€)

Reference (1961-1995) 60,276,307 24 5,132,916 44
RCMs
ARPEGE; HIRHAM5 70,882,826 28 5,809,432 50
ECHAM5R1; REMO 42,617,043 16 5,138,936 44
ECHAM5R3; RACMO 145,876,835 61 9,002,613 79
ECHAM5R3; REMO 99,833,127 41 7,658,706 66
HADCM3Q0; CLM 69,300,307 27 4,988,060 42
HADCM3Q3; 
HADRM3Q3

82,156,253 33 7,817,551 68

GCMs
CCCMA 114,928,051 47 8,305,417 73
CNRM 121,894,832 50 8,352,761 73
CSIRO 82,212,647 33 6,194,293 53
ECHAM5 54,179,309 21 5,111,187 44
GFDL 2.0 100,975,776 41 7,466,638 65
GFDL 2.1 148,693,686 63 9,145,282 80
HADCM3Q0 170,362,813 73 9,658,859 85
HADCM3Q3 133,293,053 56 8,489,891 74
IPSL 128,905,749 54 8,269,451 72
MIROC 109,325,301 45 7,937,314 69
MIUB 142,785,242 60 10,001,199 88
MRI 144,939,789 61 8,465,437 74

Figure 5.7.
Probability distribution of fl ood risk for: (a) Bonn-Duisburg (left); and (b) Mainz-Koblenz (right). The black vertical 
solid line shows risk associated with current climate conditions (based on the resampled CHR reference dataset 
(1961-1995)). Curves show the risk probabilities derived from the RCM ensemble (blue), GCM ensemble (red), 
and full ensemble (i.e. all members of the RCM and GCM ensembles). Distributions are obtained by applying a 
two-parameter gamma distribution.
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6.  Discussion

6.1 Developing long time-series of climate variables and discharge for use 
 in probabilistic fl ood risk assessments

Long time-series (3000-year) of daily climate variables (precipitation and temperature) and 
discharge were developed based on 12 GCMs and six RCMs. The time-series for the RCM simulations 
were made available through the RheinBlick 2050 project [Görgen et al., 2010], while the GCM 
simulations were downscaled with an advanced delta-change approach. The winter half-year 
maximum 10-day basin-average precipitation sums were analysed, as these events often cause 
high discharge in the lower part of the Rhine basin [Beersma et al., 2001]. The range between the 
12 GCM ensemble members representing future conditions was about 35% for the longest return 
period studied (3000 years). Moreover, the GCM ensemble showed higher quantiles of winter half-
year maximum 10-day precipitation sums than in the RCM future ensemble for each return period. 
The analyses also show that the bias-corrected RCM control time-series match the CHR reference 
dataset fairly well. The spread between the estimated quantiles of the winter half-year maximum 
10-day precipitation sums for the RCM future ensemble members increases as the return periods 
become longer.

For the extreme discharge events, the bandwidths of the two ensembles are similar at Lobith and 
Cologne, but the bandwidth of the RCM ensemble is slightly smaller than that of the GCM ensemble 
at Kaub. We also found interesting spatial differences in the results. For example, the climate model 
ensemble members do not cause the same changes in extreme discharge in all parts of the basin. 
This demonstrates the importance of using spatially distributed climate simulations when carrying 
out climate change impact studies.

The results show that adding the ensemble of 12 GCM members to the existing ensemble of 
six RCM members (driven by four parent GCMs) from RheinBlick 2050 leads to a relatively small 
increase in the overall spread of the extreme discharge results, although the ensemble means of 
the estimated discharge quantiles are higher for the GCM ensemble (as was the case for extreme 
precipitation). Given the large range of GCMs, one may have expected a larger increase in the spread 
when they were added to the RCM ensemble. The ensemble of RCM members used for the extreme 
discharge analyses was selected from a total of 17 members used in the RheinBlick 2050 study. 
These 17 ensemble members include combinations of four GCMs and 11 RCMs. Hence, even if the 
RCM ensemble members used for the extreme analyses (i.e. the RCM members used here) were 
chosen in an optimal way, the number of parent GCMs is still much lower than the 12 GCMs used 
in the present study. It appears that the RCMs used in this project have a large infl uence on the 
climate, and therefore discharge, projections. This is demonstrated by the fact that whilst the RCM 
ensemble member HADCM3Q0-CLM (i.e. the CLM RCM forced by the HADCM3Q0 GCM) is one of 
driest members, the HADCM3Q0 GCM ensemble member (not coupled to an RCM) is the wettest.

6.2 Relationship between variables of extreme climate and discharge

The relative change in the winter half-year maximum 10-day basin-average precipitation was 
found to be a relatively good predictor of extreme discharge. However, in the analyses, extreme 
precipitation and discharge values were determined independently, so the annual maxima of the 
precipitation and discharge events may have been related to different episodes or events.
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In reality, the relationship between precipitation and discharge is complex [Ward and Robinson, 
1990], especially for a large river basin such as the Rhine. In some basins, temperature (through its 
infl uence on potential evapotranspiration) can play an important role in this relationship [Ward et 
al., 2011c]. For the Rhine basin, temperature also plays an important role in snow accumulation and 
snowmelt, which can signifi cantly affect the river’s discharge [Hurkmans et al., 2010; Te Linde et 
al., 2010]. However, additional analyses carried out for this research (not shown) did not result in a 
stronger relationship between predicted extreme precipitation and discharge when temperature was 
included. Other factors may also be of infl uence in the relationship between extreme precipitation 
and discharge, such as soil moisture, groundwater levels, infi ltration rates, fl ow routing, land cover, 
and land use [e.g. Ward and Robinson, 1990].

Nevertheless, the results presented here do suggest that, for the Rhine basin, multiday precipitation 
can give a fi rst estimate of effects of changes in the discharge regime, although they cannot replace 
the complex behaviour of the non-linear and heterogeneous hydrological system. Also, hydrological 
models used for large scale river basins like the Rhine are conceptual and calibrated towards the 
current climate, resulting in a limited robustness under climate change. Both of these areas, i.e. 
the use of multiday precipitation totals as a fi rst-order estimator of discharge, and improving the 
‘climate change robustness’ of hydrological models, warrant further research.

6.3 Developing an inundation model capable of providing the large number 
 of inundation maps needed in probabilistic fl ood risk assessments

One of the main problems in developing probabilistic fl ood risk assessment methods has been 
the large number of inundation maps required, since the production of fl ood hazard maps is very 
time-consuming and computationally expensive [Apel et al., 2008; Gouldby and Kingston, 2007; 
Woodhead et al., 2007]. Therefore, in this project we developed a rapid fl ood inundation model 
(Floodscanner), and coupled it to an existing fl ood damage model (Damagescanner).

For the Rhine basin, relatively few inundation maps are available for model validation. Hence, we 
fi rst setup the model for a section of the neighbouring Meuse basin in Dutch Limburg. Floodscanner 
performed reasonably well compared to images of the historical fl oods of 1993 and 1995, as well as 
compared to results from a process-based 2D hydrodynamic model (WAQUA) [Ward et al., 2011a; 
2011b]. We also carried out a limited validation for the Rhine basin [Ward et al., 2011d, in prep.], by 
comparison of the fl ood extents simulated by Floodscanner with those in the Rhine Atlas [ICPR, 
2001].

The simplifi cations used in the approach do not allow fl ood damage estimates at fi ne resolutions 
(e.g. street to city scale), which need state-of-the-art hydraulic modelling methods [e.g. Ernst et al., 
2010]. Rather, the approach is intended to be complementary to such methods for use in regional-
to-basin scale studies in which large numbers of inundation maps are required. For example, where 
accurate basin-wide fl ood risk estimates are required, it may be useful to fi rst employ a method 
such as Floodscanner to identify the sensitivity of the risk estimates to the number of return periods 
used to develop the risk curve. Once these have been established, it may still be preferential to 
employ a more complex process-based model to simulate inundation for a selected number of 
return-periods [Ward et al., 2011a, 2011b].

In addition, the coupled methodology is useful for Monte Carlo based uncertainty analyses [e.g. Apel 
et al, 2008] and the evaluation of combinations of many different future projections. In the latter 
case, Floodscanner can be used to derive change factors for many different future projections, which 
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can then be applied to detailed baseline estimates of risk under current conditions using damage 
estimates based on the most state-of-the-art process models. As illustrated, there are many cases 
where large numbers of model evaluations are useful. This shows that more attention is needed on 
the development of relatively simple inundation models. The method developed and applied here 
is capable of this, but refi nements could be added to include the most important physical processes 
in a simple manner.

6.4 Flood risk estimates in a probabilistic framework

The present research is the fi rst attempt to assess future fl ood risk under climate change in a 
probabilistic framework. It should be understood as a fi rst demonstration of the methodological 
steps needed to perform such an assessment. In this research, the size of the full ensemble used 
to develop the PDFs of risk (18 members) is still fairly limited. This means that the selection of a 
theoretical distribution to describe the PDF of risk is also diffi cult [e.g. Hall, 2007; Hall et al., 2007; 
New et al., 2007; Rougier, 2007]. In this study we assumed a two-parameter gamma distribution, 
since this is left-bounded to zero (i.e. no negative risk can be predicted) and is frequently used in risk 
analysis. We did not assign weights to individual model members. Theoretically, a weighting could be 
given to each GCM/RCM simulation based on its ability to realistically downscale observed climate 
for the reference period. However, models that reproduce the past climate are not necessarily those 
that will give the most realistic realisation of future climate.

Keeping these limitations in mind, the results do demonstrate the potential use of the approach, 
especially given the ongoing research efforts in developing probabilistic climate change projections 
for the Fifth Assessment Report (AR5) of the IPCC. For example, a novelty of the probabilistic risk 
assessment approach is that it allows us to estimate the probability of future fl ood risk being 
larger than present fl ood risk. Based on the analyses in this study, the probability of future fl ood 
risk exceeding current risk is 92% for the section Bonn-Duisburg and 96% for the section Mainz-
Mosel. Moreover, the probability of future fl ood risk exceeding twice as much as at present is 34% 
for Bonn-Duisburg, but just 6% for Mainz-Mosel. By extension, it is possible to assess the probability 
that fl ood risk will increase by any given factor, allowing for the assessment of risk under possible 
extreme futures. Figure 5.7 shows that the addition of the GCM ensemble to the existing RCM 
ensemble from RheinBlick 2050 leads to an increase in the spread of the PDF, and a higher mean 
estimate of fl ood risk.

A recent study by Te Linde et al. [2011] examined fl ood risk for the entire Rhine basin, for a reference 
year 2000 and two climate change scenarios for 2030. The scenarios were derived using different 
methodologies [Te Linde et al, 2010] and are labelled as “extreme” and “moderate”. The “extreme” 
scenario represents an extreme climate change scenario corresponding to a 2ºC increase in global 
temperature in 2050 with respect to 1990, and changes in atmospheric circulation resulting in drier 
summers and wetter winters in the Netherlands. This scenario is based on the so-called KNMI’06 
W+ scenario of Van den Hurk et al. [2006, 2007].  The “moderate” scenario represents more moderate 
climate change effects, and follows the output of the RACMO2.1 RCM driven by the ECHAM5 GCM. 
As with the climate model runs used in the present study, this run corresponds with the IPCC SRES 
A1B scenario. Te Linde et al. [2011] simulated increases in basin-wide fl ood risk of 43% (moderate) and 
161% (extreme) by 2030 (compared to 2000). Results from our demonstration study suggest that 
the probability of fl ood risk increasing by 43% by 2081-2100 is 67% for Bonn-Duisburg and 55% for 
Mainz-Koblenz, whilst the probability of fl ood risk increasing by 161% by 2081-2100 is 11% for Bonn-
Duisburg and 0.1% for Mainz-Koblenz. A comparison with results of Te Linde et al. [2011] is limited 
by: (a) the use of different methods to calculate risk; (b) the choice of a different analysis period; and 
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(c) a different areal aggregation level. However, these limitations notwithstanding, the extreme 
risk estimate of Te Linde et al. (2011) is at the upper tail of our results. This comparison illustrates an 
interesting feature of the probabilistic framework explored here: it allows evaluation of a discrete 
scenario in the context of a wider probability distribution.

Such probabilistic information could provide information of use to stakeholders in the insurance 
industry. For example, it could aid insurers and reinsurance companies in computing insurance 
premiums under uncertainty [Michel-Kerjan, 2008] and deriving the amounts of capital reserves 
required for potential damage reimbursements. Our results also illustrate how spatially differentiated 
estimates of risk per capita can be developed. For example, our demonstrative analyses suggest 
that whilst the total annual risk is higher for the section Bonn-Duisburg than for Mainz-Koblenz, 
the annual residential risk per capita is lower. Moreover, information about extreme risk is relevant 
for decisions concerning the hedging of the tails of the loss distribution on reinsurance or capital 
markets [Froot, 1999]; the tails of the fl ood risk PDFs could assist in such assessments. At the 
moment, insurance coverage for fl ood damage is not available in the Netherlands. In recent years, 
insurers, the government, as well as academics, have been examining the possibilities of introducing 
partly private fl ood insurance [Botzen and van den Bergh, 2008; 2009]. In cases where governments 
(partly) compensate for the fl ood damages, like in the Netherlands, the framework can also provide 
information to the government about its fi nancial risk exposure [Grossi and Kunreuther, 2006].

6.5 Key limitations and recommendations for future study

This project presents the fi rst assessment of future fl ood risk under scenarios of climate change in a 
probabilistic framework. It is intended to give a demonstration of the methods that can be used in 
such a framework. The absolute fi gures should be used for qualitative comparison only in decision-
making at this time. Of course, there remain several key limitations, and many opportunities for 
further research; these are listed briefl y, and discussed in more detail in the publications related to 
this project.
• The ensembles of climate change projections used for the extreme fl ood and fl ood risk analyses 

contain a total of 18 members. This is the largest ensemble of climate model simulations yet for 
fl ood risk analysis in the Rhine basin. However, its size (18 members) still makes the selection 
of a theoretical distribution to describe the PDF of risk diffi cult. Future research should aim to 
expand the number of climate model members, and where possible increase the number of 
parent GCMs used in the RCM ensemble.

• Probabilistic projections start with having high quality climate ensembles available. Much 
climate modelling research is focused on improving individual models [IPCC, 2007b]. More 
research is needed to construct equilibrated climate model ensembles that can be used for 
hydrological and subsequently fl ood risk analyses.

• The climate projections used are all for the IPCC A1B scenario, since the most model runs 
are available for this scenario. Future studies should aim to cover a larger range of emission 
scenarios; new GCM simulations currently being carried out for the Fifth Assessment Report 
(AR5) of the IPCC may facilitate such studies.

• Climate models make future projections based on changes in greenhouse gas concentrations. 
However, natural climate variability also has a large infl uence on extreme river discharges [Ward 
et al., 2010]. More research is needed on how fl ood risk is affected by natural climate variability, 
as variability could exacerbate/ameliorate climate change impacts in the near future [Swanson 
et al 2009]. For example it would be useful to use several realisations from each GCM or RCM.
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• Flood estimates based on long resampled precipitation and temperature series are also prone 
to natural variability. For the Meuse basin this has been explored by resampling from different 
sub-series of the historical data [Kramer et al., 2008; Leander and Buishand, 2008]. A similar 
study is planned for the Rhine basin.

• The limited length of the resampled sequences causes a random error in the fl ood risk 
estimates. Therefore it may be useful to study the sensitivity of these estimates to the length 
of the resampled sequences. The error in the 1250-year discharge due to the limited simulation 
length has been quantifi ed for the river Meuse (Leander, 2009), but for an empirical quantile 
estimate rather than the Weissman estimate.

• The GCM time-series have been downscaled using the delta-change approach. This approach 
is useful as it is relatively cheap and it incorporates the observations, but it also has several 
limitations. It does not use physics for processes on smaller scales, only changes in statistical 
properties. Some potentially infl uential feedbacks are not incorporated. The method also has 
many degrees of freedom. Most of these were tested carefully, and choices were made based 
on expert opinions or literature, but still the change between the resampled observations and 
the transformed resampled observations has to be interpreted with care.

• The RCM simulations have been bias corrected. This correction is uncertain for extreme daily 
precipitation amounts. It is further assumed that the same correction applies to the control and 
future simulations. In future studies it would be preferable to assess the change in discharge 
quantiles for the RCM simulations based on the control simulation of each RCM (rather than 
using the observations as the reference).

• The HBV-96 hydrological model is calibrated based on historical data. Changes induced by 
climate change, for example changes in vegetation or groundwater levels, are not taken into 
account suffi ciently; research is needed to develop more climate-robust hydrological models.

• In this research, no hydrodynamic model was used. Hence, it is assumed that no upstream 
inundation takes place. The values for extreme discharges presented will therefore generally 
be overestimations.

• We have developed a simple inundation model and coupled it to a fl ood damage model. The 
simplifi cations dictate the method’s applications. The Floodscanner method is not intended to 
replace the need for hydraulic modelling with more complex models. Flood damage estimates 
at fi ne resolutions need to employ more state-of-the-art methods [e.g. Ernst et al., 2010]. 
However, the use of such detailed models is not feasible in studies requiring large number of 
inundation scenarios over large areas. Our research shows that more attention is needed on 
the development of relatively simple inundation models. The method developed and applied 
here is capable of this, but refi nements could be added to include the most important physical 
processes in a relatively simple manner. In future studies it may be useful to fi rst employ a 
method such as Floodscanner to identify which return periods have the most important 
infl uence on the risk estimate. Once these have been established, it may still be preferential to 
employ a more complex process-based model to simulate inundation for a selected number of 
return-periods [Ward et al., 2011a, 2011b]. 

• Since one of the main aims of the present study is to demonstrate a framework for producing 
probabilistic fl ood risk estimates, we do not examine other sources of uncertainty. At each stage 
of the modelling process, large uncertainties can be introduced, and a full fl ood risk assessment 
should attempt to assess their infl uence on the fi nal risk estimates [Apel et al., 2004]. Future 
research should attempt to estimate the uncertainty associated with the different parts of the 
model chain and input data [e.g. De Moel and Aerts, 2011].

• Moreover, we only present a probabilistic fl ood risk scenario under climate change. In reality, 
fl ood risk is also affected by many other factors (such as land subsidence, land use change, and 
population growth) which should also be examined in future research. 
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• Coping with climate change requires the undertaking of various adaptation measures to limit 
the projected rise in fl ood risk. The effectiveness of such adaptation measures in preventing 
fl ood damage could be evaluated using a probabilistic fl ood-risk framework. How ever, we 
were specifi cally requested to concentrate on scientifi c methods for risk estimation, rather 
than research on how to use the methods and/or framework for assessing adaptation options. 
Future research should examine both how the methods developed here can be applied to 
improve adaptation planning and decision-making; how decision-makers use the results of 
probabilistic impacts assessments; and how the information provided by probabilistic fl ood 
risk estimates can most effectively be communicated to stakeholders. 

7. Conclusions

We present a fi rst attempt to demonstrate a framework for producing probabilistic estimates of fl ood 
risk. We simulated discharge, fl ood damage, and fl ood risk for current conditions and for a future 
ensemble based on 18 climate model simulations (12 GCM simulations and six RCM simulations). 
For the extreme discharge quantiles, the bandwidths of the two ensembles are similar at Lobith 
and Cologne, but the bandwidth of the RCM ensemble is smaller than that of the GCM ensemble 
at Kaub. We found that extreme precipitation and discharge quantiles are, on average, lower for 
the RCM ensemble compared to the GCM ensemble. We found interesting spatial differences in the 
results. For example, the ensemble members do not cause the same changes in extreme discharge 
in all parts of the basin. This demonstrates the importance of using spatially distributed climate 
simulations in climate change impact studies.

We found relative change in winter half-year maximum 10-day basin-average precipitation to be a 
relatively good predictor of relative change in extreme discharge. However, in reality the relationship 
is complex, and also affected by factors such as temperature, evapotranspiration, snowmelt, soil 
moisture, groundwater levels, infi ltration rates, fl ow routing, and land use. Nevertheless, the results 
suggest that, for the Rhine basin, change in multiday precipitation can give a fi rst estimate of effects 
of changes in the discharge regime.

The availability of rapid inundation models is essential in a probabilistic fl ood risk modelling 
framework. The method applied here (Floodscanner) is capable of this, but refi nements could be 
added to include the most important physical processes in a relatively simple manner. 

We developed probabilistic fl ood risk scenarios for two case study sections of the Rhine, resulting in 
baseline fl ood risk estimates of € 60 million p.a. and € 5 million p.a. for the sections Bonn-Duisburg 
and Mainz-Koblenz respectively. The framework allows us to estimate the probability of future fl ood 
risk exceeding current risk (given the limitations of the study), namely 92% for the section Bonn-
Duisburg and 96% for the section Mainz-Mosel. Using such a framework it is possible to assess the 
probability that fl ood risk will increase by any given factor, allowing for the assessment of risk under 
possible extreme future scenarios.

The research shows that the addition of the GCM ensemble to the existing RCM ensemble from 
RheinBlick 2050 leads to a slightly wider distribution of future fl ood risks estimates. However, the 
spread of the individual RCM and GCM ensembles is rather similar.
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The research is intended to give a demonstration of the methods that can be used in a probabilistic 
fl ood risk framework; the absolute fi gures should be used for qualitative comparison only. 
Probabilistic fl ood risk assessments hold promise, but research remains to be carried out to: refi ne 
the methods presented here; examine how the methods can be applied to improve adaptation 
planning; assess how decision-makers use results of probabilistic impacts assessments; and to 
investigate how the information provided can most effectively be communicated to stakeholders.
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Adaptation

www.climatechangesspatialplanning.nl

Climate changes Spatial Planning
Climate change is one of the major environmental issues of this century. The Netherlands are 
expected to face climate change impacts on all land- and water related sectors. Therefore water 
management and spatial planning have to take climate change into account. The research 
programme ‘Climate changes Spatial Planning’, that ran from 2004 to 2011, aimed to create applied 
knowledge to support society to take the right decisions and measures to reduce the adverse 
impacts of climate change. It focused on enhancing joint learning between scientists and 
practitioners in the fields of spatial planning, nature, agriculture, and water- and flood risk 
management. Under the programme five themes were developed: climate scenarios; mitigation; 
adaptation; integration and communication. Of all scientific research projects synthesis reports 
were produced. This report is part of the Adaptation series.

Adaptation
Dutch climate research uses a ‘climate proofing’ approach for adaptation. Climate proofing does 
not mean reducing climate based risks to zero; that would be an unrealistic goal for any country. 
The idea is to use a combination of infrastructural, institutional, social and financial adaptation 
strategies to reduce risk and optimalise opportunities for large scale innovations.  Climate changes 
Spatial Planning realised projects in a multidisciplinary network that jointly assessed impacts and 
developed adaptation strategies and measures. The following themes were central to the 
programme: water safety, extreme precipitation, nature and biodiversity, agriculture, urban areas, 
transport (inland and road transport) and the North Sea ecosystem. In special projects, the so 
called hotspots, location-specific measures were developed that focused on combining ‘blue’, 
‘green’ and ‘red’ functions. 

c/o  Alterra, Wageningen UR
P.O. Box 47
6700 AA Wageningen
The Netherlands
T +31 317 48 6540
info@klimaatvoorruimte.nl
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