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Abstract. Probability estimates of the future change of ex-
treme precipitation events are usually based on a limited
number of available global climate model (GCM) or regional
climate model (RCM) simulations. Since floods are related
to heavy precipitation events, this restricts the assessment of
flood risks. In this study a relatively simple method has been
developed to get a better description of the range of changes
in extreme precipitation events. Five bias-corrected RCM
simulations of the 1961–2100 climate for a single green-
house gas emission scenario (A1B SRES) were available for
the Rhine basin. To increase the size of this five-member
RCM ensemble, 13 additional GCM simulations were anal-
ysed. The climate responses of the GCMs are used to modify
an observed (1961–1995) precipitation time series with an
advanced delta change approach. Changes in the temporal
means and variability are taken into account. It is found that
the range of future change of extreme precipitation across
the five-member RCM ensemble is similar to results from
the 13-member GCM ensemble. For the RCM ensemble, the
time series modification procedure also results in a similar
climate response compared to the signal deduced from the
direct model simulations. The changes from the individual
RCM simulations, however, systematically differ from those
of the driving GCMs, especially for long return periods.

1 Introduction

Heavy precipitation events are of importance since they are
a major cause of floods, which can have large impacts on
society. Based on a wide range of observational and global
climate model (GCM) and regional climate model (RCM)
studies, changes in greenhouse gas concentrations are ex-
pected to affect the frequency and magnitude of extreme pre-
cipitation. These studies show an intensification of precipi-
tation extremes over most of Europe (Beniston et al., 2007;
Buonomo et al., 2007; Fowler and Ekström, 2009; Frei et
al., 2006; Hanel and Buishand, 2011; Kyselý and Beranov́a,
2009; Kyseĺy et al., 2011; Nikulin et al., 2011). The projec-
tions of changes in the precipitation extremes are sensitive to
the choice of RCMs, the driving GCM and the emission sce-
nario. Credible high-resolution climate scenarios for impact
studies require an ensemble of RCM simulations driven by
multiple GCMs (Fowler et al., 2007; Bernstein et al., 2007).
Ideally such ensembles should represent the full range of nat-
ural variability and model uncertainty. In practice, however,
they are assembled on an opportunity basis, and often the size
of the ensembles is restricted by limited resources (Kendon
et al., 2010).

For this study the bias-corrected output of five RCM sim-
ulations was made available through the RheinBlick2050
project (G̈orgen et al., 2010), where a comprehensive en-
semble of hydrological simulations driven by the output of
RCMs was used to analyse future changes in the Rhine dis-
charge regime. The five RCMs were driven by GCMs that
were all forced with the A1B SRES emission scenario. It
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is of interest to assess to what degree the results based on
such a small sample size describe the uncertainty associated
with the model error and natural variability. RCMs can re-
solve small-scale features, but can still contain large biases,
partly inherited from the driving GCMs. The five-member
RCM ensemble from the RheinBlick2050 project was ex-
tended with an ensemble of 13 GCM simulations to get a
better description of the uncertainty induced by the GCM en-
semble. Several studies have indicated that this uncertainty
exceeds the uncertainty arising from the choice of downscal-
ing techniques and emission scenarios (Graham et al., 2007;
Menzel et al., 2006; Prudhomme and Davies, 2009; Rowell,
2006; Wilby and Harris, 2006). Also the GCM ensemble was
driven by the A1B emission scenario. Since high-resolution
RCM simulations from all these 13 GCM simulations were
not available, we followed a pragmatic approach by post-
processing the GCM outputs, using “change factors” (Diaz-
Nieto and Wilby, 2005; Arnell and Reynard, 1996), also re-
ferred to as thedelta change approach(Prudhomme et al.,
2002; Te Linde et al., 2010; Lenderink et al., 2007).

Because safety levels along the Rhine are high, this study
focused on changes in very rare extreme events. For flood
protection in the Netherlands, a design discharge is used
that is exceeded, on average, only once in 1250 yr. To deter-
mine this design discharge, the distribution of the relatively
short observed discharge series needs to be statistically ex-
trapolated to the required exceedance probability. Extrapo-
lation of the distributions fitted to the observed flood peaks
leads to large uncertainties (Klemeš, 2000a,b). Alternatively,
a weather generator has been used (Buishand and Brandsma,
2001) to create long climate time series by resampling the
historical data. To be able to analyse extreme discharge, the
weather generator can be coupled to a rainfall-runoff model
for the Rhine, but this step was not considered in the present
study.

This study explores the possibility to combine the future
changes in extreme precipitation from an RCM ensemble
with the future changes in a GCM ensemble. A new delta
change method for precipitation is introduced that allows
changes in the extremes to be different from changes in the
mean. The range of future changes in extreme multi-day pre-
cipitation of the RCM ensemble is compared with the range
of the GCM ensemble. A comparison is also made between
the signal of the individual RCM simulations and the sig-
nal of the driving GCMs. Furthermore, the delta change ap-
proach is validated against the use of bias-corrected RCM
output.

2 Study area and data

2.1 The Rhine basin

The river Rhine originates in the Swiss Alps as a moun-
tain river, fed by glacier water, snowmelt and rainfall. From

Switzerland it flows through Germany and the Netherlands
into the North Sea. The Rhine basin has an area of about
185 000 km2, and the river has a length of 1238.8 km, mak-
ing it the longest river in Western Europe. The annual mean
discharge (1901–2000) at Lobith, where the Rhine enters the
Netherlands, is 2200 m3 s−1. The estimated 1250-yr return
level (the discharge that is exceeded, on average, once in
1250 yr) at this site is 16 000 m3 s−1.

The climate of the Rhine basin is determined by its loca-
tion in a Western European zone of temperate climatic con-
ditions with frequent synoptic weather changes. From the
northwest to the east and southeast, the maritime climate
gradually changes into a more continental climate. Precipita-
tion occurs all year round; mean annual precipitation ranges
from about 500 mm in parts of the Rhine valley to 3000 mm
in some parts of the Alpine region. Spatially averaged an-
nual precipitation sums between 1901 and 2000 (Belz et al.,
2007) point towards a slight increase in different sub-regions
against a fairly uniform background decadal-scale variabil-
ity. The increase of precipitation is more pronounced during
the hydrological winter (November–April).

2.2 RCM and GCM data set

In Table 1 an overview is given of RCM and GCM simula-
tions of which the precipitation output is considered in this
study. In the RheinBlick2050 project (Görgen et al., 2010)
the RCM simulations were used as input of the hydrological
HBV (Hydrologiska Byr̊ans Vattenbalansavdelning) model
(Bergstr̈om and Forsman, 1973) for the Rhine basin to study
the impact of climate change on the discharge in this river
basin. We have selected five out of the six RCM simulations
used in the RheinBlick2050 project; the ARPEGE-HIRHAM
simulation was left out, because the complex reduced grid
structure of the ARPEGE model did not allow a straightfor-
ward interpolation to a common grid. With the exception of
the REMO10 simulation, the RCM data were obtained from
the archive of the ENSEMBLES project (Van der Linden and
Mitchell, 2009). Model-specific bias corrections (Görgen et
al., 2010) were derived by comparing the RCM control simu-
lations with a high-resolution observed precipitation data set
(see Sect. 2.3).

The additional GCM data were obtained from the Coupled
Model Intercomparison Project Phase 3 (CMIP3) archive
(Meehl et al., 2007). All GCM simulations used are driven
by the A1B emission scenario. The GCM output was inter-
polated to a common 2◦ longitude by 2.5◦ latitude grid. The
Rhine basin is covered by eight grid cells (see Fig. 1). For
all GCMs a control run period of 35 yr (1961–1995) and a
scenario run period of 20 yr (2081–2100) were used. The
choices for these periods were based on data availability. The
main problem of unequal sizes is that it may lead to biases in
the estimation of parameters used in the delta method. There-
fore, changes were also considered with respect to the 20-yr
control periods 1961–1980 and 1976–1995. The averages of

Hydrol. Earth Syst. Sci., 16, 4517–4530, 2012 www.hydrol-earth-syst-sci.net/16/4517/2012/



S. C. van Pelt et al.: Future changes in extreme precipitation in the Rhine basin 4519

Table 1. GCM and RCM simulations used in this study. Note that two different transient simulations with the ECHAM5 model (r1 and r3,
which refer to runs with different initial conditions) were used as RCM boundary conditions; two RCMs are forced by ECHAM5r3.

GCM RCM GCM references RCM references

CGCM3.1T63 Flato (2005)
CNRM-CM3 Salas-Ḿelia et al. (2005)
CSIRO-Mk3.0 Gordon et al. (2002)
ECHAM5r1 REMO10 Roeckner et al. (2003) Jacob (2001)
ECHAM5r3 RACMO Lenderink et al. (2003)

REMO Jacob (2001)
GFDL-CM2.0 Delworth et al. (2006)
GFDL-CM2.1
HADCM3Q0 CLM Gordon et al. (2000) Steppeler et al. (2003)
HADCM3Q3 HADRM3Q3 Jones (2004)
IPSL-CM4 Marti et al. (2006)
MIROC3.2 hires Hasumi and Emori (2004)
MIUB Min et al. (2005)
MRI-CGCM2.3.2 Yukimoto et al. (2006)

these changes did not differ much from the changes with re-
spect to the 35-yr control run period (1961–1995).

2.3 Observations

Observations of precipitation for the Rhine basin were avail-
able from the International Commission for the Hydrology of
the Rhine basin (CHR). The so-called CHR-OBS data set (De
Wit and Buishand, 2007) contains area-averaged daily pre-
cipitation for 134 sub-basins of the Rhine basin that were de-
fined for hydrological simulations with the HBV model. The
CHR-OBS data cover the period 1961–1995. A newer and
longer precipitation data set has become available recently
(Photiadou et al., 2011), but this data set could not be used
in this study because the bias corrections of the RCM output
in the RheinBlick2050 project were based on the CHR-OBS
data set. In a companion study, the HBV model was used to
analyse and interpret the results described in this paper in
terms of changes of flood risk (Ward et al., 2012).

3 Methodology

3.1 Time series transformation

An advanced delta method was used to transform the CHR
observations into a time series that is representative of future
conditions consistent with the GCM climate change signal.
The delta method makes use of “change factors” and is there-
fore also referred to as thedelta change approach. The most
simple form of the delta method (sometimes referred to as
the “classical delta method”) only considers changes in the
mean. The change in the mean may vary seasonally through-
out the year or spatially. When coupling with impact models
is required (e.g. with a hydrological model), delta methods
have a practical advantage that an observed reference time

series at the temporal and spatial scale of interest can be used
to represent the current climate. The assumption that one has
to make is that changes at the (large) scale of the climate
model (GCM) can be directly applied to the (local) scale of
the time series.

In this study, a more advanced delta method was used that
not only takes changes in the mean into account but also the
changes in the extremes. Again these changes can vary sea-
sonally and spatially. Rather than a proportional adjustment
of observed precipitation, the following non-linear transfor-
mation was applied to the bulk of the data (see also Fig. 1 for
a graphical summary of the complete procedure):

P ∗
= aP b, (1)

whereP andP ∗ represent the observed and future precipi-
tation, respectively, anda andb are the transformation coef-
ficients (a, b > 0). Shabalova et al. (2003) showed that this
relation betweenP ∗ andP arises if the parameters of a fit-
ted Weibull distribution are perturbed. Leander and Buis-
hand (2007) used this type of transformation to correct for
bias in RCM simulations for the Meuse basin; i.e. Eq. (1) was
applied to RCM output rather than observed precipitation as
in the present study. In addition, Eq. (1) was modified for
largeP and the transformation coefficients were smoothed
in this study (see below).

Several studies have indicated that extreme discharges in
the lower part of the Rhine generally result from extreme
multi-day precipitation amounts in the river basin. For in-
stance, during the December 1993 and January 1995 floods
precipitation was extreme over a 10-day period (Disse and
Engel, 2001; Ulbrich and Fink, 1995). Therefore the future
change in (extreme) multi-day precipitation is more relevant
than the change in (extreme) daily precipitation. In this study
Eq. (1) was applied to non-overlapping 5-day sums (73 5-day
periods in a calendar year of 365 days). The 5-day time step
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Fig. 1. Overview of the methodology. Panel 1 shows the Rhine basin, divided in 8 (GCM) grid cells and 134 sub-basins. Panel 2 shows the
mean precipitation over a 5-day period in each grid cell for the observations and the control and future GCM simulation, all on grid cell level.
The observations were upscaled to grid cell level by taking a weighted average over the sub-basins. In panel 3, the probability density of
5-day precipitation is shown, with the 60 % (P60) and the 90 % (P90) quantiles (for the observations as well as for GCM control and future
simulations). Also the excess (the amount of precipitation> the 90 % quantile) is shown for the control and the future model run. Panel 4
displays the transformation. The daily observations in each sub-basin were multiplied by the change factorR, which was obtained from the

observed (P ) and transformed (P ∗) 5-day precipitation amount and depends on the coefficientsa andb and forP >P90 also onEF/EC. For
each sub-basin the daily precipitation was transformed using the GCM signal from the grid cell that contains most of its surface area.
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recognizes the relevance of multi-day precipitation sums, but
yet is small enough to be linked with daily precipitation as
well.

The coefficientsa andb were derived from the 60 % quan-
tile (P60) and the 90 % quantile (P90) of the 5-day precipita-
tion sums and the (future) changes therein. Sample quantiles
based on the ordered non-overlapping 5-day precipitation
amounts were used as estimates ofP60 andP90. P60 was con-
sidered because this quantile is generally closer to the mean
than the median value (P50) owing to the positively skewed
probability distribution of the 5-day precipitation amounts.
P90 (which is exceeded on average once in ten 5-day periods)
is in the range of the seasonal maximum 5-day precipitation
amounts (see Appendix A). Since the transformation given
by Eq. (1) represents a monotonic increase, the quantiles of
the transformed 5-day precipitation sums are simply obtained
by applying the same transformation to the quantiles of the
observed 5-day precipitation:

P ∗

60 = a (P60)
b (2)

P ∗

90 = a (P90)
b . (3)

From these two equations, firstb was solved by eliminating
a (Leander and Buishand, 2007):

b =
log

(
P ∗

90

/
P ∗

60

)
log

(
P90

/
P60

) . (4)

Onceb was determined,a was obtained by substitutingb into
Eq. (2):

a = P ∗

60/(P60)
b . (5)

If there is no bias in the 60 % quantileP C
60 and the 90 % quan-

tile P C
90 in the GCM control simulation compared to the ob-

servations, the quantilesP C
60 andP C

90 can be substituted for
P60 andP90 in Eqs. (4) and (5), and the quantilesP F

60 andP F
90

in the future climate forP ∗

60 andP ∗

90. However, ifP60 and
P90 are biased, this method results in a transformation that
does not reproduce the relative changes in these quantiles. In
order to ensure that the relative changes ofP60 andP90 in
the transformed series correspond to the relative changes of
these quantiles in the GCM simulation, the following bias-
correction factors were introduced:

g1 = P O
60

/
P C

60 (6)

g2 = P O
90

/
P C

90 , (7)

where the superscriptC again refers to the GCM control cli-
mate andO refers to observed (reference) data. These cor-
rections were applied toP C

60 andP C
90 as well asP F

60 andP F
90.

The coefficientsa andb then become

b =
log

{
g2 · P F

90

/(
g1 · P F

60

)}
log

{
g2 · P C

90

/(
g1 · P C

60

)} (8)

a = P F
60

/(
P C

60

)b

· g1−b
1 . (9)

Note that the classical delta change method is obtained by as-
suming that the GCM responses in the 60 and 90 % quantiles
are equal:

P F
90

/
P C

90 = P F
60

/
P C

60

leading tob = 1 anda =P F
60/P

C
60, and therefore Eq. (1) re-

duces toP ∗ =aP .

Transformation for large P

Equation (1) was applied to the observed values for which
P ≤ P O

90. For largerP this equation is not flexible enough
to reproduce the changes in the extremes adequately. This
could be improved by separately addressing the change in
the excesses,E =P − P90, i.e. the events exceedingP90. The
mean excesses for the control and future period were defined
as

EC =

∑
EC

nC
and EF =

∑
EF

nF (10)

wherenC andnF are the numbers of 5-day periods in which
the 90 % quantile is exceeded in the control and future run,
respectively. The size of the mean excess is closely related to
the slope of an extreme-value plot of the seasonal maximum
5-day precipitation amounts (see Appendix A).

To ensure that the transformation reproduces the change in
the mean excess, Eq. (1) was modified as

P ∗
= EF

/
EC ·

(
P − P O

90

)
+ a

(
P O

90

)b

for P > P O
90. (11)

Effectively the excess scales linearly with the factorEF/EC.
The use of Eq. (11) also avoids unrealistically high precipi-
tation amounts, which may occasionally occur when Eq. (1)
is used forP >P O

90 if b > 1.
In principle the coefficientsa andb and the change in the

mean excessesEF/EC may vary seasonally and spatially.
To reduce sampling variability in the transformation coeffi-
cients, we chose to use smoothed but distinct values ofa, b

andEF/EC for each calendar month. First, the quantilesP60
andP90 were estimated for each calendar month using six
5-day periods for the calendar months January to November
and seven 5-day periods for December. These monthly esti-
mates ofP60 andP90 were subsequently smoothed over time
by using a 3-month moving average with weights 1/4, 1/2 and
1/4. The mean excessesEC andEF were smoothed over time
similarly. The temporally smoothed estimates ofP60 andP90
were used in Eq. (8) to obtain a temporally smoothed value of
b for each calendar month and for each grid cell in the basin.
To reduce sampling variability further, the median value ofb

over the eight grid cells for each calendar month was used for
all grid cells in the basin. Analogously, the median ofEF/EC

over the eight grid cells was taken for each calendar month.
The coefficienta finally varies spatially (a distinct value for
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Fig. 2. Relative changes of the return levels of 10-day precipitation in the winter half-year (October–March) for each of the eight GCM grid
cells covering the Rhine basin. Panel(a): results for the CGCM3.1T63 simulation; panel(b): results for the ECHAM5r1 simulation. Within
both panels, the left part shows the results for no temporal and spatial smoothing and the right part shows the results with smoothing. Note
the difference in plotting scale for the CGCM3.1T63 and ECHAM5r1 results.

each grid cell in the basin) and was obtained by using the
temporally smoothedP60 and the spatially uniform value of
b in Eq. (9).

Here daily precipitation amounts for the 134 HBV sub-
basins in the Rhine basin for the period 1961–1995 were
used as the baseline time series. Equations (1) and (11), how-
ever, apply to the area-average precipitation over a GCM grid
cell. The precipitation amounts for the HBV sub-basins were
therefore aggregated to grid cell values by taking an area-
weighted average of all sub-basins lying in the respective
grid cell. After the transformation using Eqs. (1) and (11),
the final step involved the disaggregation of the transformed
5-day precipitation values at the GCM grid cell into daily
precipitation at the sub-basin scale. For this a change factor
R was defined for each grid cell and 5-day period as

R = P ∗
/
P . (12)

Each daily observation in a sub-basin allocated to a given
GCM grid cell was transformed according to the correspond-
ing value ofR. Thus, the daily observations in a 5-day period
obtained the same relative change. The method ensures that
the change in the temporally and spatially aggregated daily
precipitation of the sub-basins corresponds to the change in
the 5-day precipitation over the grid cell. The non-linear na-
ture of Eqs. (1) and (11) generally results in different change
factors for days in distinct 5-day intervals. The result is a fu-
ture time series of daily precipitation on sub-basin level.

3.2 Exploring the sensitivity of choices

In the process of developing and applying the advanced
delta change method, a number of choices were made. These
choices influence the changes in the return levels of extreme
precipitation. In this section, the sensitivity of the results to
some of these choices is discussed.

Temporal and spatial smoothing was applied to reduce the
influence of sampling noise on the estimated climate change

signal. Spatial variation ofb andEF/EC was ignored. The
need for temporal and spatial smoothing is shown in Fig. 2
for two GCM simulations. The changes from the model out-
put were used to transform the observed data, both with and
without temporally and spatially smoothed coefficients in
Eqs. (1) and (11). The figure gives the relative changes of the
return levels of 10-day precipitation for the winter half-year
(October–March) as a function of return period. The winter
half-year is the main season of interest for high river dis-
charge in the lower part of the Rhine basin.

The changes are shown for each grid cell of the Rhine
basin separately. Similar figures were made for all other
GCM simulations. For the transformed data based on the
CGCM3.1T63 simulation (panel a of Fig. 2), an unrealisti-
cally large increase for return periods> 10 yr was found at
grid cell 4 when no smoothing was applied. A physically
plausible explanation is lacking for the huge precipitation
amounts resulting from the changes of a factor of 3 or more
in the right tail of the distribution.

The results for the ECHAM5r1 simulation (panel b) are
characteristic for most other GCM simulations. The spread
of the relative changes strongly increases with increasing re-
turn period when temporal and spatial smoothing were not
applied. Smoothing also improved the correspondence be-
tween the changes in the mean precipitation and the mean
10-day maximum basin-average precipitation from the trans-
formed time series and the changes in these properties from
the climate model output (not shown).

The effect of different choices for temporal smoothing on
the relative changes of the 10-yr return level of the 10-day
basin-average precipitation in the winter half-year is shown
in Fig. 3. The range of these changes is similar for the first
three smoothers, but grows when less or no smoothing is ap-
plied. It further turned out that the degree of spatial smooth-
ing has little effect on the relative changes in the 10-yr return
level of the 10-day basin average precipitation.
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Fig. 3.Relative changes of the 10-yr return level of the 10-day basin-average precipitation in the winter half-year (October–March) for each
GCM. Panel(a) shows the effect of different choices for temporal smoothing: two 5-month moving averages with weights 1/16, 1/8, 3/8, 1/8,
1/16 (sm1) and 1/8, 1/4, 1/4, 1/4, 1/8 (sm2), two 3-month moving averages with weights 1/4, 1/2, 1/4 (sm3) and 1/8, 3/4, 1/8 (sm4) and no
temporal smoothing (no-sm). Panel(b) shows the effect of shifting the 5-day period. Mean indicates the mean of the relative changes of the
5 different shifts for each GCM simulation. The asterisk indicates the type of smoothing(a) or the 5-day period(b) used in this study.

The coefficients and quantiles (described in Sect. 3.1) were
based on non-overlapping 5-day precipitation sums. The sen-
sitivity of shifting the 5-day period 1 to 4 days on the relative
changes of the 10-yr return level of 10-day basin-average pre-
cipitation is also shown in Fig. 3. A shift of the 5-day period
has a marked effect for some climate model simulations; the
overall effect on the ensemble range is small.

The sensitivity to the bias correction of the 60 and 90 %
quantiles of the 5-day precipitation sums in the GCM simu-
lations was tested by comparing the relative changes in the
mean 10-day maximum basin-average precipitation in the
raw GCM model output to the changes in the transformed
data taking eitherg1 andg2 as specified using Eqs. (6) and (7)
or g1 =g2 = 1, i.e without bias correction. Figure 4 shows the
results for the summer half-year (April–September) and the
winter half-year (October–March). For summer the bias cor-
rection on bothP60 andP90 leads to the best correspondence
between the transformed time series and the direct GCM sim-
ulations. For winter the bias corrections only play a minor
role.

3.3 Resampling

To estimate quantiles of the distributions of extreme precipi-
tation amounts, a 3000-yr synthetic sequence of daily precip-
itation was available for each HBV sub-basin from the work
of Beersma (2002). Daily precipitation was generated with
daily temperature using nearest neighbour resampling from
the 35-yr record of historical observations. The 3000-yr pre-
cipitation series were transformed to future time series with
the advanced delta method described in Sect. 3.1.

The method of time-series resampling of meteorological
variables in the Rhine basin applied in this study was origi-
nally developed as part of a new methodology to determine
the design discharge for flood protection in the Netherlands

Fig. 4. Comparison of the relative change (future versus present
day) of the mean 10-day maximum basin-average precipitation de-
rived directly from the raw GCM model output versus the change
obtained from the transformation procedure for summer (left panel)
and winter (right panel). Relative changes from the transformed ob-
servations are shown for no bias correction (No Factor) and for bias
correction onP60 andP90 (P60+P90). The grey line represents op-
timal correspondence (i.e. the 1 : 1 line).

(Beersma and Buishand, 2003; Wójcik et al., 2000). Leander
and Buishand (2007) and Leander et al. (2008) applied the
same methodology for the first time to RCM data, but for the
Meuse basin. Recently it has also been applied for the Rhine
basin using time series from the RACMO RCM driven by the
ECHAM5 GCM (Te Linde et al., 2010) and from an ensem-
ble of RCMs in the RheinBlick2050 project (Görgen et al.,
2010). The resampled RCM data from the RheinBlick2050
project were made available for the present study.

Nearest-neighbour resampling was used to reproduce tem-
poral correlation and to preserve the dependence between
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daily precipitation and temperature (Rajagopalan and Lall,
1999). In the multi-site application for the Rhine basin, daily
precipitation and temperature were sampled simultaneously
with replacement from the historical data to preserve their
mutual dependencies. Summary statistics of the daily precip-
itation and temperature fields were needed in this applica-
tion to avoid problems with the high-dimensional data space
(Buishand and Brandsma, 2001). In each simulation step, the
10 nearest neighbours of the last generated day in terms of
these summary statistics are searched for in the historical
data. Details about the sensitivity of the autocorrelation and
the simulated extremes to the summary statistics used and pa-
rameters in the resampling procedure can be found in Buis-
hand and Brandsma (2001).

To reduce the effect of seasonal variation, the search for
nearest neighbours was restricted to days within a moving
window of 61 days, centred on the calendar day of interest
(Beersma, 2002; Ẃojcik et al., 2000). Daily precipitation was
standardized by dividing by the mean wet-day precipitation
amount of the calendar day of interest.

4 Results

4.1 Change in mean, standard deviation and quantiles

Table 2 presents the changes in the 60 and 90 % quantiles
and the change in the mean excess after the transformation
defined by Eqs. (1) and (11) has been applied to the 5-day
sums of the observed precipitation series for all model simu-
lations presented in Table 1. From Table 2 it can be seen that
for the GCM simulations the changes in the 90 % quantile
and especially the mean excess (E) are generally stronger
than the changes in the 60 % quantile, which supports the
use of a non-linear delta method. In particular for GFDL2.1-
CM2.1 and IPSL-CM4 the change in the mean excess largely
exceeds the change in the 60 and 90 % quantiles. In contrast,
the relative changes inP60, P90 and mean excess are very
similar for the RCM simulations. Also, the relative changes
for the RCM output processed with the delta method are
similar to those for the bias-corrected RCM output from the
RheinBlick2050 project. However, the relative changes for
the RCMs generally differ from the relative changes of their
driving GCM. The RCMs exhibit a smaller change in the
mean excess (E) than their driving GCM, except those forced
by ECHAM5r3.

For the remaining part of this paper, the results for the
RCMs will refer to those obtained by the delta method, ex-
cept when stated differently. In Table 3 changes in the mean
precipitation and the standard deviation of the 5-day precip-
itation sums are shown. The mean precipitation increases in
winter and decreases in summer. For the GCM simulations
the increase in the standard deviation of the 5-day precipi-
tation sums is larger than the increase in the mean. This is
consistent with the relatively large changes in the upper tail

Table 2. Relative changes in the 60 % quantile (P60), the 90 %
quantile (P90) and mean excess (E) after a transformation of the
5-day precipitation sums of the observed precipitation based on the
simulated changes between 1961–1995 and 2081–2100 of a GCM
or RCM. The changes are basin-average relative changes for the
winter half-year (October–March). The changes between the ob-
served and transformed data were obtained by taking the median
of the relative changes of the temporally smoothed estimates for
each calendar month over the eight grid cells at the common GCM
resolution and averaging these medians for the winter half-year.
For the RCMs, the transformation was applied after the RCM out-
put was aggregated to the GCM grid resolution. The results in the

columns headedP DIR
60 , P DIR

90 andE
DIR

refer to the direct use of
bias-corrected RCM output from the RheinBlick2050 project. For
the latter, the relative changes were based on the differences be-
tween the RCM control and RCM future period.

GCM/RCM P60 P90 E P DIR
60 P DIR

90 E
DIR

CGCM3.1T63 1.10 1.11 1.22
CNRM-CM3 0.97 1.04 1.28
CSIRO-Mk3.0 1.01 1.05 1.17
ECHAM5r1 0.98 1.04 1.25 1.12 1.08 1.07
ECHAM5r1-REMO10 1.11 1.10 1.00
ECHAM5r3 1.11 1.15 1.11 1.21 1.22 1.19
ECHAM5r3-RACMO 1.18 1.19 1.21 1.19 1.16 1.14
ECHAM5r3-REMO 1.16 1.14 1.15
GFDL-CM2.0 1.04 1.11 1.21
GFDL-CM2.1 1.05 1.10 1.41
HADCM3Q0 1.12 1.17 1.35 1.02 1.12 1.04
HADCM3Q0-CLM 1.03 1.10 1.07
HADCM3Q3 1.07 1.12 1.20 1.17 1.13 1.21
HADCM3Q3-HADRM3 1.18 1.10 1.17
IPSL-CM4 0.89 1.01 1.36
MIROC3.2 0.94 1.03 1.19
MIUB 0.95 1.09 1.24
MRI-CGCM2.3.2 1.05 1.09 1.34
MEAN GCMs 1.02 1.08 1.26
MEAN RCMs 1.13 1.13 1.12 1.14 1.14 1.13

Table 3. Relative changes in mean precipitation and the standard
deviation (σ ) of the 5-day precipitation sums after the transforma-
tion of the observations according to the changes in the GCM and
RCM simulations. The changes are shown for the winter half-year
(October–March) and the summer half-year (April–September).

Winter Summer

Mean σ Mean σ

Mean GCMs 1.08 1.15 0.88 1.02
Mean RCMs 1.13 1.12 0.91 1.06

of the distribution (P90, E) in these simulations. For both the
GCM and RCM simulations, the decrease in mean summer
precipitation is accompanied by an increase in the standard
deviation of the 5-day precipitation sums.
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Fig. 5. Gumbel plots of the maximum 10-day basin-average precipitation in winter (October–March) for the future climate (end of the
21st century) from the short time series of transformed observations – 35 yr, panel(a) – and those from the long time series of transformed
resampled observations – 3000 yr, panel(b). The black line represents the maximum 10-day basin average precipitation sums in the (resam-
pled) observations; the dashed grey lines refer to transformed observations based on the 13 GCM simulations and the solid grey lines refer
to the 5 RCM simulations. The horizontal and vertical dashed black lines in the right panel mark the extension of the left panel.

4.2 Precipitation extremes in short and long time series
from the GCM-RCM ensemble

To assess the possible future change in the occurrence of
extreme precipitation, the maximum 10-day basin-average
precipitation amounts in the winter half-year from the trans-
formed time series for future climate conditions were com-
pared with those in the observed time series for the original
35-yr series as well as the resampled 3000-yr series (Fig. 5).
The spread between the future 10-day precipitation amounts
is small at short return periods, but becomes larger at long
return periods. For return periods between 10 and 50 yr, the
spread for the resampled 3000-yr series is about 25 % smaller
than the spread for the original 35-yr series. For the 3000-
yr series, the total ensemble spans a range from almost no
change compared to the observations to an increase of about
30 % at the longest return periods.

4.3 Range of return levels of maximum 10-day
precipitation sums in the GCM and RCM ensemble

In Fig. 6 four return levels of the 10-day winter maximum
basin-average precipitation for 2081–2100 are shown. These
return levels are based on the 3000-yr resampled time series.
The return levels were derived empirically from the ordered
sample of the 10-day maxima. For the 1000-yr return level,
a distribution was fitted to the 15 largest values using an ap-
proach due to Weissman (1978) because of the small number
of exceedances of this return level (see also Appendix B).
The return levels from the 3000-yr resampled observations
are inserted in Fig. 6 as the references representing current
climate conditions. For the bias-corrected RCM output from
the RheinBlick2050 project, each return level for the future
climate was obtained by multiplying the relative difference
in that return level between the future and control simulation
with the reference value.

Fig. 6.Ranges of return levels of 10-day basin-average precipitation
for four return periods for the future climate (end of 21st century).
The results are shown for the transformed observations based on the
RCM and GCM ensembles and for the bias-corrected RCM output
from the RheinBlick2050 project. All GCM results are plotted in
the first column of symbols. Open symbols represent GCM simula-
tions that force at least one RCM; crosses refer to the results from
the other GCM simulations. The second column represents trans-
formed observations based on RCM simulations while the third col-
umn refers to the bias-corrected RCM output. The RCMs are indi-
cated by the same symbol as used for the driving GCM (in the first
column). The grey horizontal lines denote the return levels of the
10-day basin-average precipitation from the reference observations
(i.e. the current climate).

For the 10-yr return level, the mean and spread in the GCM
ensemble are comparable to those in the (delta method) RCM
ensemble. For the 100-, 200- and 1000-yr return levels, the
mean for the future period in the GCM ensemble is larger
than the mean in the RCM ensemble. The spread within the
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GCM ensemble is slightly larger than the spread within the
RCM ensemble for these return levels. This may be attributed
to the larger size of the GCM ensemble (13 compared to five
for the RCM ensemble). While the two RCM simulations that
are forced by ECHAM5r3 show larger return levels of 10-day
maximum basin-average precipitation than the driving GCM,
all other RCM simulations show lower return levels than the
forcing GCM, in agreement with the changes inE presented
in Table 2. In particular for CLM the difference with the sig-
nal from the driving GCM is large for all return periods. For
the RCM simulations, the changes in the return levels ob-
tained from the bias-corrected model output are comparable
to those generated with the delta method.

5 Discussion and conclusions

This study explored the options to expand an existing range
of RCM projections of changes in extreme multi-day pre-
cipitation in the Rhine basin, using an ensemble of GCM
projections. The results of this study allow for a number of
conclusions.

First, the selection of RCMs used in the RheinBlick2050
project does not appear to be strongly biased with respect
to the multi-day extreme precipitation change imposed by
the small ensemble of driving GCMs. As shown in Fig. 6,
the small number of driving GCMs for the RCM simulations
from the RheinBlick2050 project covers the ranges deduced
from the ensemble of 13 GCM simulations fairly well; the
driving GCMs do not form a cluster or contain major outliers.
When we look at the total ensemble, we see that the ranges
covered by the RCM simulations and the GCM simulations
are similar. The ARPEGE-HIRHAM5 simulation, which was
excluded in the present study, does not alter this result be-
cause of its intermediate changes with respect to the other
RCM simulations from the RheinBlick2050 project (see 63–
64 pp. of the RheinBlick2050 report; Görgen et al., 2010).

Second, for the RCM simulations the advanced non-linear
delta method applied in this study generates a range of ex-
treme multi-day precipitation changes that is similar to the
range obtained directly from the bias-corrected RCM sim-
ulations from the RheinBlick2050 project. This gives con-
fidence in the application of the advanced non-linear delta
method, using an ensemble of model projections. Responses
derived from individual RCMs did show modest sensitivity
to the selected method, but their ranking is similar for the
two methods, which confirms our confidence in the advanced
delta method.

Third, the multi-day extreme precipitation signal deduced
from the RCMs is not trivially related to the response derived
from the driving GCMs. For three out of five RCM-GCM
combinations, the RCM output leads to a smaller change of
extreme 10-day precipitation sums than the corresponding
GCM output. The two RCMs forced by ECHAM5r3 showed
an increase in the change of the extreme 10-day precipitation

sums, compared to the GCM output. Especially at long re-
turn periods, the individual paired GCM and RCM simula-
tions show systematic differences. This could indicate that
the RCMs have an influence on the signal of their driving
GCMs, but the small number of simulations explored here
permits neither a firm conclusion on the origin, nor robust-
ness of this difference. Further research with larger ensem-
bles and systematic exploration of potential causes is needed.
Possible causes of this response are locally generated natu-
ral variability (to be tested with larger ensembles), different
physical expressions or parameterizations at higher spatial
resolution, or dynamical/physical feedbacks that are repre-
sented differently by the driving GCM and the nested RCM.

The advanced delta method applied in this study is use-
ful as it is relatively cheap and there is no bias in the refer-
ence time series. However, it has also some limitations. Since
it is not physically but statistically based, it potentially ig-
nores relevant processes or feedbacks. The delta method as
applied here neglects changes in the shape of the right tail of
the distribution, by using a linear scaling of the excess above
P90. It is, however, not possible to obtain reliable estimates of
changes in the shape of the upper tail of the distribution from
relatively short climate model simulations. This leads to a
large uncertainty about the change in extremes, which is not
taken into account in the present study. In addition the delta
method required some subjective choices regarding temporal
and spatial smoothing to control noise due to sampling un-
certainty. In particular, the degree of temporal smoothing has
some influence on the range of the relative changes of the 10-
yr return level of 10-day basin-average precipitation. As for
other methods, the results of the delta method are influenced
by sampling uncertainty resulting from the limited length of
the observed and climate model time series, especially for
long return periods.

For developing climate adaptation measures that deal with
(future) flood risk, it is important to have knowledge about
the changes in precipitation extremes. The results of this
study provide an opportunity to base adaptation measures
on an ensemble of 18 climate model simulations, which for
current standards can be considered a large ensemble. The
range of future changes in extreme multi-day precipitation,
based on an ensemble of both GCMs and RCMs, gives more
insight into the possible upper and lower bound of such
changes, which is important information for water managers
and flood risk studies (Ward et al., 2012). Figure 6 shows
that using a sub-sample of GCM or RCM results alone could
lead to an underestimation of the uncertainty range of future
return levels, in particular for long return periods. Ideally,
multi-model ensembles should therefore contain both RCM
and GCM based results. However, as long as the RCMs and
GCMs show different responses and the nature of these dif-
ferences is unexplained, the authors recommend to present
the responses for the different model ensembles separately.
This allows the user of this information to become aware that
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differences in the responses are (at least in part) related to
differences in the type of climate model used.

Appendix A

Relation between parameters in the transformation
formula and extreme-value characteristics

In this appendix we relate the 90 % quantileP90 and the mean
excess to properties of the distribution of seasonal maximum
precipitation amounts. In the hydrological literature the gen-
eralized Pareto (GP) distribution has often been used to de-
scribe the distribution of the excesses of a high thresholdu0
(e.g. Begueŕıa, 2005; Van Montfort and Witter, 1986):

Pr(P − u0 ≤ x|P > u0) =

1 −

(
1 +

κx
α0

)−1/κ

, κ 6= 0

1 − exp
(
−

x
α0

)
, κ = 0

(A1)

whereα0 is the scale parameter andκ the shape parameter.
For κ = 0 the GP distribution reduces to the exponential dis-
tribution. In our applicationP is the precipitation sum in an
arbitrary 5-day interval. A reasonable assumption is that the
consecutive 5-day values are independent. The numberK0
of exceedances ofu0 in a given season follows then a Pois-
son distribution with parameterλ0 (the mean number of ex-
ceedances) ifu0 is sufficiently high. For the distribution of
the seasonal maximumPmax,

H(x) = Pr(Pmax ≤ x) =

{
exp

{
−

[
1 + ξ

(
x −µ

σ

)]−1/ξ
}
, ξ 6= 0

exp
{
−exp

[
−

(
x −µ

σ

)]}
, ξ = 0

(A2)

which is a generalized extreme value (GEV) distribution with
location parameterµ, scale parameterσ , and shape param-
eterξ . The caseξ = 0 is known as the Gumbel distribution.
The three GEV distribution parameters are uniquely deter-
mined by the Poisson parameterλ0 and the GP distribution
parametersα0 andκ (Buishand, 1989; Wang, 1991):

µ =

(
u0 −

α0
κ

(
1 − λκ

0

)
, κ 6= 0

u0 + α0 ln (λ0) , κ = 0

σ = α0λκ
0

ξ = κ. (A3)

Note that Eq. (A2) only represents the distribution of the sea-
sonal maxima forPmax≥ u0.

An important property of the GP distribution is that, for all
thresholdsu >u0, the excesses follow also a GP distribution
with the same shape parameterκ but with a different scale
parameterα (e.g. Wang, 1991; Coles, 2001). The latter is
related to the GEV scale parameterσ in the same way asα0:

σ = αλκ , (A4)

whereλ is the mean number of exceedances ofu in the sea-
son of interest. The mean of the excesses is given by (Coles,
2001)

µE =
α

1 − κ
, κ < 1. (A5)

The GEV scale parameter gives the slope of the extreme-
value plot of the seasonal maxima. From Eqs. (A4) and (A5),
it follows

σ = λκ (1 − κ) µE, κ < 1. (A6)

Hence, the GEV scale parameter is proportional to the mean
excess. The constant of proportionality depends on the shape
parameter. Forκ = 0, we haveσ =µE. Becauseκ generally
does not differ much from zero for 5-day precipitation max-
ima, the constant of proportionality is close to 1.

If the excesses of the observed 5-day precipitation
amounts follow a GP distribution, then the transformation
(Eq. 11) changes the scale parameter by a factorEF/EC

and leaves the shape parameter unchanged. The slope of the
extreme-value plot changes by the same factor. The transfor-
mation does, however, not make explicitly use of an under-
lying GP distribution. For instance, in the case of a Weibull
distribution, it also changes the scale parameter by a factor
EF/ECand leaves the shape parameter unchanged. A differ-
ent transformation is needed to change the shape of the upper
tail of the distribution ofP . It is, however, difficult to find
significant changes in the GP shape parameter.

Assuming independence of the 5-day precipitation sums,
the number of exceedances of the 90% quantileP90 in a sea-
son of 5m days follows a binomial distribution with parame-
tersm andp = 0.10. The probability that this quantile is not
exceeded in a 90-day season is then 0.918 = 0.150. For a 180-
day season this probability equals 0.936 = 0.023, and thusP90
is in the extreme left tail of the distribution ofPmax. The delta
method was also tested using the 95 % quantileP95 instead
of P90. The changes in the mean excesses ofP95 turned out
to be very sensitive to the method used to estimateP95 from
the ordered sample of non-overlapping 5-day precipitation
amounts owing to the small number of exceedances of this
quantile in the short time-series used in this study. This sen-
sitivity can be mitigated by taking all possible, overlapping
5-day precipitation amounts into account for estimatingP95.

Appendix B

Weissman approach for extreme values

The 1000-yr return levels and their changes were estimated
from the 15 largest values using the Weissman (1978) ap-
proach. LetX1n ≥ X2n ≥...≥ Xkn be thek largest values in a
sample of sizen from a distributionF . In this studyF refers
to the distribution of the 10-day maximum basin – average
precipitation in the winter half-year.
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Under certain conditions onF , the joint density ofX1n,
X2n...Xkn can for largen be approximated as (Weissman,
1978)

f1,...,k (x1, ..., xk) = σ−k exp

[
−e−(xk−µ)/σ

−

k∑
i=1

(xi − µ)/σ

]
(B1)

whereµ is a location parameter (which depends onn) andσ

is a scale parameter. Equation (B1) applies if, after appropri-
ate scaling, the distribution of the maximumX1n tends to the
Gumbel distribution asn → ∞.

Maximization of the densityf1,...,k with respect toµ and
σ yields the maximum likelihood estimates:

σ̂ = Xkn − Xkn (B2)

µ̂ = Xkn + σ̂ ln k (B3)

whereXkn is the average of thek largest values. TheT -year
return levelxT is then estimated as

x̂T = Xkn + σ̂ ln(k T /n). (B4)

In this studyT = 1000,n = 3000 andk = 15. Takingk = 100
instead ofk = 15 had almost no influence on the bandwidth
of the estimated 1000-yr return levels.
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Wójcik, R., Beersma, J. J., and Buishand, T.: Rainfall generator for
the Rhine basin, Multi-site generation of weather variables for
the entire drainage area, Publication 186-V, Royal Netherlands
Meteorological Institute (KNMI), De Bilt, 38 pp., 2000.

Yukimoto, S., Noda, A., Kitoh, A., Hosaka, M., Yoshimura, H.,
Uchiyama, T., Shibata, K., Arakawa, O., and Kusunoki, S.:
Present-day climate and climate sensitivity in the Meteorological
Research Institute coupled GCM version 2.3 (MRI-CGCM2.3),
J. Meteorol. Soc. Jpn., 84, 333–363, 2006.

Hydrol. Earth Syst. Sci., 16, 4517–4530, 2012 www.hydrol-earth-syst-sci.net/16/4517/2012/

http://dx.doi.org/10.1029/2009wr007707
http://dx.doi.org/10.1029/2005WR004065

