325 research outputs found

    Decreased Levels of Bisecting GlcNAc Glycoforms of IgG Are Associated with Human Longevity

    Get PDF
    BACKGROUND: Markers for longevity that reflect the health condition and predict healthy aging are extremely scarce. Such markers are, however, valuable in aging research. It has been shown previously that the N-glycosylation pattern of human immunoglobulin G (IgG) is age-dependent. Here we investigate whether N-linked glycans reflect early features of human longevity. METHODOLOGY/PRINCIPAL FINDINGS: The Leiden Longevity Study (LLS) consists of nonagenarian sibling pairs, their offspring, and partners of the offspring serving as control. IgG subclass specific glycosylation patterns were obtained from 1967 participants in the LLS by MALDI-TOF-MS analysis of tryptic IgG Fc glycopeptides. Several regression strategies were applied to evaluate the association of IgG glycosylation with age, sex, and longevity. The degree of galactosylation of IgG decreased with increasing age. For the galactosylated glycoforms the incidence of bisecting GlcNAc increased as a function of age. Sex-related differences were observed at ages below 60 years. Compared to males, younger females had higher galactosylation, which decreased stronger with increasing age, resulting in similar galactosylation for both sexes from 60 onwards. In younger participants (<60 years of age), but not in the older age group (>60 years), decreased levels of non-galactosylated glycoforms containing a bisecting GlcNAc reflected early features of longevity. CONCLUSIONS/SIGNIFICANCE: We here describe IgG glycoforms associated with calendar age at all ages and the propensity for longevity before middle age. As modulation of IgG effector functions has been described for various IgG glycosylation features, a modulatory effect may be expected for the longevity marker described in this study

    Meta-analysis of four new genome scans for lipid parameters and analysis of positional candidates in positive linkage regions

    Get PDF
    Lipid levels in plasma strongly influence the risk for coronary heart disease. To localise and subsequently identify genes affecting lipid levels, we performed four genome-wide linkage scans followed by combined linkage/association analysis. Genome-scans were performed in 701 dizygotic twin pairs from four samples with data on plasma levels of HDL- and LDL-cholesterol and their major protein constituents, apolipoprotein AI (ApoAI) and Apolipoprotein B (ApoB). To maximise power, the genome scans were analysed simultaneously using a well-established meta-analysis method that was newly applied to linkage analysis. Overall LOD scores were estimated using the means of the sample-specific quantitative trait locus (QTL) effects inversely weighted by the standard errors obtained using an inverse regression method. Possible heterogeneity was accounted for with a random effects model. Suggestive linkage for HDL-C was observed on 8p23.1 and 12q21.2 and for ApoAI on 1q21.3. For LDL-C and ApoB, linkage regions frequently coincided (2p24.1, 2q32.1, 19p13.2 and 19q13.31). Six of the putative QTLs replicated previous findings. After fine mapping, three maximum LOD scores mapped within 1cM of major candidate genes, namely APOB (LOD =2.1), LDLR (LOD =1.9) and APOE (LOD =1.7). APOB haplotypes explained 27% of the QTL effect observed for LDL-C on 2p24.1 and reduced the LOD-score by 0.82. Accounting for the effect of the LDLR and APOE haplotypes did not change the LOD score close to the LDLR gene but abolished the linkage signal at the APOE gene. In conclusion, application of a new meta-analysis approach maximised the power to detect QTLs for lipid levels and improved the precision of their location estimate. © 2005 Nature Publishing Group. All rights reserved

    Genetics and Not Shared Environment Explains Familial Resemblance in Adult Metabolomics Data

    Get PDF
    Metabolites are small molecules involved in cellular metabolism where they act as reaction substrates or products. The term 'metabolomics' refers to the comprehensive study of these molecules. The concentrations of metabolites in biological tissues are under genetic control, but this is limited by environmental factors such as diet. In adult mono- and dizygotic twin pairs, we estimated the contribution of genetic and shared environmental influences on metabolite levels by structural equation modeling and tested whether the familial resemblance for metabolite levels is mainly explained by genetic or by environmental factors that are shared by family members. Metabolites were measured across three platforms: two based on proton nuclear magnetic resonance techniques and one employing mass spectrometry. These three platforms comprised 237 single metabolic traits of several chemical classes. For the three platforms, metabolites were assessed in 1407, 1037 and 1116 twin pairs, respectively. We carried out power calculations to establish what percentage of shared environmental variance could be detected given these sample sizes. Our study did not find evidence for a systematic contribution of shared environment, defined as the influence of growing up together in the same household, on metabolites assessed in adulthood. Significant heritability was observed for nearly all 237 metabolites; significant contribution of the shared environment was limited to 6 metabolites. The top quartile of the heritability distribution was populated by 5 of the 11 investigated chemical classes. In this quartile, metabolites of the class lipoprotein were significantly overrepresented, whereas metabolites of classes glycerophospholipids and glycerolipids were significantly underrepresented

    Transcriptional Profiling of Human Familial Longevity Indicates a Role for ASF1A and IL7R

    Get PDF
    The Leiden Longevity Study consists of families that express extended survival across generations, decreased morbidity in middle-age, and beneficial metabolic profiles. To identify which pathways drive this complex phenotype of familial longevity and healthy aging, we performed a genome-wide gene expression study within this cohort to screen for mRNAs whose expression changes with age and associates with longevity. We first compared gene expression profiles from whole blood samples between 50 nonagenarians and 50 middle-aged controls, resulting in identification of 2,953 probes that associated with age. Next, we determined which of these probes associated with longevity by comparing the offspring of the nonagenarians (50 subjects) and the middle-aged controls. The expression of 360 probes was found to change differentially with age in members of the long-lived families. In a RT-qPCR replication experiment utilizing 312 controls, 332 offspring and 79 nonagenarians, we confirmed a nonagenarian specific expression profile for 21 genes out of 25 tested. Since only some of the offspring will have inherited the beneficial longevity profile from their long-lived parents, the contrast between offspring and controls is expected to be weak. Despite this dilution of the longevity effects, reduced expression levels of two genes, ASF1A and IL7R, involved in maintenance of chromatin structure and the immune system, associated with familial longevity already in middle-age. The size of this association increased when controls were compared to a subfraction of the offspring that had the highest probability to age healthily and become long-lived according to beneficial metabolic parameters. In conclusion, an “aging-signature” formed of 21 genes was identified, of which reduced expression of ASF1A and IL7R marked familial longevity already in middle-age. This indicates that expression changes of genes involved in metabolism, epigenetic control and immune function occur as a function of age, and some of these, like ASF1A and IL7R, represent early features of familial longevity and healthy ageing

    Fat metabolism is associated with telomere length in six population-based studies

    Get PDF
    Telomeres are repetitive DNA sequences located at the end of chromosomes, which are associated to biological aging, cardiovascular disease, cancer and mortality. Lipid and fatty acid metabolism have been associated with telomere shortening. We have conducted an in-depth study investigating the association of metabolic biomarkers with telomere length (LTL). We performed an association analysis of 226 metabolic biomarkers with LTL using data from 11 775 individuals from six independent population-based cohorts (BBMRI-NL consortium). Metabolic biomarkers include lipoprotein lipids and subclasses, fatty acids, amino acids, glycolysis measures and ketone bodies. LTL was measured by quantitative polymerase chain reaction or FlowFISH. Linear regression analysis was performed adjusting for age, sex, lipid-lowering medication and cohort-specific covariates (model 1) and additionally for body mass index (BMI) and smoking (model 2), followed by inverse variance-weighted meta-analyses (significance threshold Pmeta = 6.5 × 10-4). We identified four metabolic biomarkers positively associated with LTL, including two cholesterol to lipid ratios in small VLDL (S-VLDL-C % and S-VLDL-CE %) and two omega-6 fatty acid ratios (FAw6/FA and LA/FA). After additionally adjusting for BMI and smoking, these metabolic biomarkers remained associated with LTL with similar effect estimates. In addition, cholesterol esters in very small VLDL (XS-VLDL-CE) became significantly associated with LTL (P = 3.6 × 10-4). We replicated the association of FAw6/FA with LTL in an independent dataset of 7845 individuals (P = 1.9 × 10-4). To conclude, we identified multiple metabolic biomarkers involved in lipid and fatty acid metabolism that may be involved in LTL biology. Longitudinal studies are needed to exclude reversed causation

    Metabolomic biomarkers of habitual B vitamin intakes unveil novel differentially methylated positions in the human epigenome

    Get PDF
    Background: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts. Associations between self-reported habitual daily B vitamin intakes and 756 metabolites (Metabolon Inc.) were assessed in serum samples from 1064 UK participants from the TwinsUK cohort. The identified B vitamin metabolomic biomarkers were then used in epigenome-wide association tests with fasting blood DNA methylation levels at 430,768 sites from the Infinium HumanMethylation450 BeadChip in blood samples from 2182 European participants from the TwinsUK and KORA cohorts. Candidate signals were explored for metabolite associations with gene expression levels in a subset of the TwinsUK sample (n = 297). Metabolomic biomarker epigenetic associations were also compared with epigenetic associations of self-reported habitual B vitamin intakes in samples from 2294 European participants. Results: Eighteen metabolites were associated with B vitamin intakes after correction for multiple testing (Bonferroni-adj. p < 0.05), of which 7 metabolites were available in both cohorts and tested for epigenome-wide association. Three metabolites — pipecolate (metabolomic biomarker of B6 and folate intakes), pyridoxate (marker of B6 and folate) and docosahexaenoate (DHA, marker of B6) — were associated with 10, 3 and 1 differentially methylated positions (DMPs), respectively. The strongest association was observed between DHA and DMP cg03440556 in the SCD gene (effect = 0.093 ± 0.016, p = 4.07E−09). Pyridoxate, a catabolic product of vitamin B6, was inversely associated with CpG methylation near the SLC1A5 gene promoter region (cg02711608 and cg22304262) and with SLC7A11 (cg06690548), but not with corresponding changes in gene expression levels. The self-reported intake of folate and vitamin B6 had consistent but non-significant associations with the epigenetic signals. Conclusion: Metabolomic biomarkers are a valuable approach to investigate the effects of dietary B vitamin intake on the human epigenome

    Heritability estimates for 361 blood metabolites across 40 genome-wide association studies

    Get PDF
    Metabolomics examines the small molecules involved in cellular metabolism. Approximately 50% of total phenotypic differences in metabolite levels is due to genetic variance, but heritability estimates differ across metabolite classes. We perform a review of all genome-wide association and (exome-) sequencing studies published between November 2008 and October 2018, and identify >800 class-specific metabolite loci associated with metabolite levels. In a twin-family cohort (N = 5117), these metabolite loci are leveraged to simultaneously estimate total heritability (h2 total), and the proportion of heritability captured by known metabolite loci (h2 Metabolite-hits) for 309 lipids and 52 organic acids. Our study reveals significant differences in h2 Metabolite-hits among different classes of lipids and organic acids. Furthermore, phosphatidylcholines with a high degree of unsaturation have higher h2 Metabolite-hits estimates than phosphatidylcholines with low degrees of unsaturation. This study highlights the importance of common genetic variants for metabolite levels, and elucidates the genetic architecture of metabolite classes
    corecore