1,294 research outputs found

    Couplerlib: a metadata-driven library for the integration of multiple models of higher and lower trophic level marine systems with inexact functional group matching

    Get PDF
    End-to-end modelling is a rapidly developing strategy for modelling in marine systems science and management. However, problems remain in the area of data matching and sub-model compatibility. A mechanism and novel interfacing system (Couplerlib) is presented whereby a physical–biogeochemical model (General Ocean Turbulence Model–European Regional Seas Ecosystem Model, GOTM–ERSEM) that predicts dynamics of the lower trophic level (LTL) organisms in marine ecosystems is coupled to a dynamic ecosystem model (Ecosim), which predicts food-web interactions among higher trophic level (HTL) organisms. Coupling is achieved by means of a bespoke interface, which handles the system incompatibilities between the models and a more generic Couplerlib library, which uses metadata descriptions in extensible mark-up language (XML) to marshal data between groups, paying attention to functional group mappings and compatibility of units between models. In addition, within Couplerlib, models can be coupled across networks by means of socket mechanisms. As a demonstration of this approach, a food-web model (Ecopath with Ecosim, EwE) and a physical–biogeochemical model (GOTM–ERSEM) representing the North Sea ecosystem were joined with Couplerlib. The output from GOTM–ERSEM varies between years, depending on oceanographic and meteorological conditions. Although inter-annual variability was clearly present, there was always the tendency for an annual cycle consisting of a peak of diatoms in spring, followed by (less nutritious) flagellates and dinoflagellates through the summer, resulting in an early summer peak in the mesozooplankton biomass. Pelagic productivity, predicted by the LTL model, was highly seasonal with little winter food for the higher trophic levels. The Ecosim model was originally based on the assumption of constant annual inputs of energy and, consequently, when coupled, pelagic species suffered population losses over the winter months. By contrast, benthic populations were more stable (although the benthic linkage modelled was purely at the detritus level, so this stability reflects the stability of the Ecosim model). The coupled model was used to examine long-term effects of environmental change, and showed the system to be nutrient limited and relatively unaffected by forecast climate change, especially in the benthos. The stability of an Ecosim formulation for large higher tropic level food webs is discussed and it is concluded that this kind of coupled model formulation is better for examining the effects of long-term environmental change than short-term perturbations

    Stormwater sand filters in water-sensitive urban design

    Full text link
    This paper investigates the suitability of sand filters for harvesting and treating stormwater for non-potable reuse purposes. A stormwater sand filtration device was constructed in a small urban catchment in Sydney, Australia. A sand filter is typically used in water-sensitive urban design (WSUD) as a component of a treatment train to remove pollution from stormwater before discharge to receiving waters, to groundwater or for collection and reuse. This paper describes an 18 month field study undertaken to determine the effectiveness and pollutant removal efficiency of a sand filter, and the differences in the pollutant removal efficiency of two grades of sand. A comparison of pollutant removal with previous literature on sand filters showed similar efficiencies but nutrient removal was higher than expected. A further unexpected result was that the coarse filter media performed as well as the fine media for most pollutant types and was superior in suspended solids removal. Improved modelling equations for predicting suspended solids and total phosphorus removal in sand filters are also presented in this paper

    ‘Follow the Moon’ Development: Writing a Systematic Literature Review on Global Software Engineering Education

    Get PDF
    This presentation reflects on method and practice in Computer Science Education Research, through introducing the process of conducting a Systematic Literature Review. While Systematic Literature Reviews are an established research method within the Software Engineering discipline, they are a relatively unfamiliar research approach within Computer Science Education. Yet research disciplines can be strengthened by borrowing and adapting methods from other fields. I reflect on the rationale and underlying philosophy behind Systematic Reviews, and the implications for conducting a rigorous study and the quality of the resulting outputs. This chronicle of the journey of an ITiCSE working group, outlines the process we adopted and reflects on the methodological and logistical challenges we had to overcome in producing a review titled Challenges and Recommendations for the Design and Conduct of Global Software Engineering Courses. I conclude by discussing how systematic literature reviews can be adapted to an undergraduate teaching setting
    • …
    corecore