37 research outputs found

    First Measurement of 72Ge(n,γ) at n_TOF

    Get PDF
    9th European Summer School on Experimental Nuclear AstrophysicsThe slow neutron capture process (s-process) is responsible for producing about half of the elemental abundances heavier than iron in the universo

    High precision measurement of the radiative capture cross section of 238U at the n-TOF CERN facility

    Get PDF
    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented

    The 236U neutron capture cross-section measured at the n-TOF CERN facility

    Get PDF
    The 236U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the 236U(n, γ) reaction crosssection has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n TOF facility with two different detection systems: an array of C6D6 detectors, employing the total energy deposited method, and a 4π total absorption calorimeter (TAC), made of 40 BaF2 crystals. The two n TOF data sets agree with each other within the statistical uncertainty in the Resolved Resonance Region up to 800 eV, while sizable differences (up to 20%) are found relative to the current evaluated data libraries. Moreover two new resonances have been found in the n TOF data. In the Unresolved Resonance Region up to 200 keV, the n TOF results show a reasonable agreement with previous measurements and evaluated data

    Recent results in nuclear astrophysics at the n_TOF facility at CERN

    Get PDF
    The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented

    Measurement of the 241Am neutron capture cross section at the n-TOF facility at CERN

    Get PDF
    New neutron cross section measurements of minor actinides have been performed recently in order to reduce the uncertainties in the evaluated data, which is important for the design of advanced nuclear reactors and, in particular, for determining their performance in the transmutation of nuclear waste. We have measured the 241 Am(n,γ) cross section at the n TOF facility between 0.2 eV and 10 keV with a BaF2 Total Absorption Calorimeter, and the analysis of the measurement has been recently concluded. Our results are in reasonable agreement below 20 eV with the ones published by C. Lampoudis et al. in 2013, who reported a 22% larger capture cross section up to 110 eV compared to experimental and evaluated data published before. Our results also indicate that the 241 Am(n,γ) cross section is underestimated in the present evaluated libraries between 20 eV and 2 keV by 25%, on average, and up to 35% for certain evaluations and energy ranges.Plan Nacional I+D+I FPA2014-53290-C2-1Comisión Europea, ANDES FP7- 249671Comisión Europea, CHANDA FP7-60520

    Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n-TOF total absorption calorimeter and a fission tagging based on micromegas detectors

    Get PDF
    The accuracy on neutron capture cross section of fissile isotopes must be improved for the design of future nuclear systems such as Gen-IV reactors and Accelerator Driven Systems. The High Priority Request List of the Nuclear Energy Agency, which lists the most important nuclear data requirements, includes also the neutron capture cross sections of fissile isotopes such as 233,235U and 239,241Pu. A specific experimental setup has been used at the CERN n TOF facility for the measurement of the neutron capture cross section of 235U by a set of micromegas fission detectors placed inside a segmented BaF2 Total Absorption Calorimeter.Plan Nacional de I+D+I Física de particulas FPA2014-53290-C2-

    First results on photon strength functions of 78Se from the two-step γ Cascades measurement

    No full text
    Two-step gamma cascades (TSCs) following the radiative capture of thermal neutrons in 77Se were measured at the research reactor at Řež near Prague. Results on photon strength functions (PSFs) of 78Se, obtained from comparison of experimental TSC spectra with outcomes of simulations under different assumptions about level density and PSFs using the DICEBOX algorithm, are presented. The main attention is paid to possible manifestation of the pygmy resonance observed recently in this nucleus in the nuclear resonance fluorescence measurement and low-energy PSF enhancement observed in Oslo-type experiments for all A ≲ 100 nuclei

    First results on photon strength functions of

    No full text
    Two-step gamma cascades (TSCs) following the radiative capture of thermal neutrons in 77Se were measured at the research reactor at Řež near Prague. Results on photon strength functions (PSFs) of 78Se, obtained from comparison of experimental TSC spectra with outcomes of simulations under different assumptions about level density and PSFs using the DICEBOX algorithm, are presented. The main attention is paid to possible manifestation of the pygmy resonance observed recently in this nucleus in the nuclear resonance fluorescence measurement and low-energy PSF enhancement observed in Oslo-type experiments for all A ≲ 100 nuclei

    25th anniversary of the foundation of the Joint Institute for Nuclear Research

    No full text
    summary:Autorský kolektiv: František Bečvář, Pavel Exner, Miroslav Finger, Marián Gmitro, Richard Lednický, Jaroslav Sedlák, Ivo Zvára
    corecore