2,055 research outputs found
A review of the genus Agapetus Curtis (Trichoptera: Glossosomatidae) in eastern and central North America, with description of 12 new species
Twenty-nine species of caddisflies in the genus Agapetus Curtis in eastern and central North America are reviewed. Twelve are described as new species: Agapetus aphallus (known only from females); Agapetus baueri, Agapetus flinti, Agapetus harrisi, Agapetus hesperus, Agapetus ibis, Agapetus kirchneri, Agapetus meridionalis, Agapetus pegram, Agapetus ruiteri, Agapetus stylifer, and Agapetus tricornutus. Agapetus rossi Denning 1941 is recognized as a junior subjective synonym of Agapetus walkeri (Betten and Mosely 1940), new synonym. A key to males is provided, and species’ distributions are mapped
The thermodynamics of binary liquid mixtures of compounds containing multiple bonds.
Excess thermodynamic properties have been determined for several binary liquid mixtures with the aim of testing various thermodynamic theories and postulates. Excess molar enthalpies, HEm, have been determined using an LKB flow microcalorimeter and excess molar volumes, VEm, have been determined using an Anton Paar vibrating tube densitometer. The activity coefficients at infinite dilution ƴ∞₁₃, have been determined using an atmospheric pressure gas-liquid chromatograph. The excess molar enthalpies and the excess molar volumes have been measured at 298.15 K for systems involving the bicyclic compounds decahydronaphthalene (decalin), 1,2,3,4-tetrahydronaphthalene (tetralin), bicyclohexyl, or cyclohexylbenzene mixed with 1- hexene, 1-hexyne, 1-heptene, 1-heptyne, cyclohexene, 1,3-cyclohexadiene, 1,4- cyclohexadiene, or benzene. These excess properties have also been measured for systems where the bicyclic compound has been replaced with benzene, cyclohexane or n-hexane. The results show defmite trends related to the size, shape, and the degree of unsaturation of the component molecules. The Flory theory has been used to predict excess molar enthalpies and excess molar volumes for {(a bicyclic compound or benzene or cyclohexane or n-hexane) +(an n-alkane or a 1-alkene or a 1-alkyne or a cycloalkane or cyclohexene or a cycloalkadiene or benzene)}. The one parameter equations offer reasonably good correlations between the predicted and the experimental results. More insight into the origins of the contnbutions to the excess thermodynamic properties for these systems has been gained by considering the approximate equations of Patterson and co-workers, which separate the interactional and the free volume contributions to the excess molar enthalpy and the excess molar volume. The one parameter equations have adequately rationalized a good deal of the observed behaviour for HEm and VEm. The theory of Liebermann and co-workers, which does not employ any adjustable parameters, has not been as successful at predicting the excess thermodynamic properties for the above systems. The activity coefficients at infinite dilution have been measured at 278.15 K, 288.15 K and 298.15 K for n-bexane, 1-bexene, 1-hexyne, n-heptane, 1-heptene, 1-heptyne, cyclohexane, cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and benzene, in decalin, tetralin, bicyclohexyl, and cyclohexylbenzene. Solvent losses from the column have been accounted for by an extrapolation procedure. The activity coefficient results together with the HEm and VEm values have been used to calculate the partial molar excess thermodynamic properties of mixing at infinite dilution. The partial molar excess properties at infinite dilution for decalin mixtures are similar to those for bicyclohexyl mixtures. There is also a similarity between the properties of the tetralin mixtures and the cyclohexylbenzene mixtures. The cycloalkadienes, benzene and the 1-alkynes exhibit a strong dissociation effect on being mixed with the saturated solvents, decalin and bicyclohexyl, but associate strongly with tetralin and with cyclohexylbenzene. The Flory theory bas been used to predict activity coefficients at infinite dilution from the experimentally determined HEm results for { (n-bexane or 1-hexene or 1-hexyne or naheptane or 1-heptene or 1-beptyne) + (a bicyclic compound)}. The theory is much better at predicting values for mixtures where both components are either saturated molecules or are unsaturated molecules than for {saturated + unsaturated} mixtures
Recommended from our members
Sensory and instrumental analysis of medium and long shelf-life Charentais cantaloupe melons (Cucumis melo L.) harvested at different maturities
The flavour profiles of two genotypes of Charentais cantaloupe melons (medium shelf-life and long shelf-life), harvested at two distinct maturities (immature and mature fruit), were investigated. Dynamic headspace extraction (DHE), solid-phase extraction (SPE), gas chromatography–mass spectrometry (GC-MS) and gas chromatography–olfactometry/mass spectrometry (GC-O/MS) were used to determine volatile and semi-volatile compounds. Qualitative descriptive analysis (QDA) was used to assess the organoleptic impact of the different melons and the sensory data were correlated with the chemical analysis. There were significant, consistent and substantial differences between the mature and immature fruit for the medium shelf-life genotype, the less mature giving a green, cucumber character and lacking the sweet, fruity character of the mature fruit. However, maturity at harvest had a much smaller impact on the long shelf-life melons and fewer differences were detected. These long shelf-life melons tasted sweet, but lacked fruity flavours, instead exhibiting a musty, earthy character
Mississippian stratotypes
Working Group on the Mississippian of the U.S.A.Ope
Topological Phase Transitions and Holonomies in the Dimer Model
We demonstrate that the classical dimer model defined on a toroidal hexagonal
lattice acquires holonomy phases in the thermodynamic limit. When all
activities are equal the lattice sizes must be considered mod 6 in which case
the finite size corrections to the bulk partition function correspond to a
massless Dirac Fermion in the presence of a flat connection with nontrivial
holonomy. For general bond activities we find that the phase transition in this
model is a topological one, where the torus degenerates and its modular
parameter becomes real at the critical temperature. We argue that these
features are generic to bipartite dimer models and we present a more general
lattice whose continuum partition function is that of a massive Dirac Fermion.Comment: 7 pages, 4 figures. Minor corrections with additional figure
DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model
Abstract
Background
There is a significant demand for colorectal cancer (CRC) screening methods that are noninvasive, inexpensive, and capable of accurately detecting early stage tumors. It has been shown that models based on the gut microbiota can complement the fecal occult blood test and fecal immunochemical test (FIT). However, a barrier to microbiota-based screening is the need to collect and store a patient’s stool sample.
Results
Using stool samples collected from 404 patients, we tested whether the residual buffer containing resuspended feces in FIT cartridges could be used in place of intact stool samples. We found that the bacterial DNA isolated from FIT cartridges largely recapitulated the community structure and membership of patients’ stool microbiota and that the abundance of bacteria associated with CRC were conserved. We also found that models for detecting CRC that were generated using bacterial abundances from FIT cartridges were equally predictive as models generated using bacterial abundances from stool.
Conclusions
These findings demonstrate the potential for using residual buffer from FIT cartridges in place of stool for microbiota-based screening for CRC. This may reduce the need to collect and process separate stool samples and may facilitate combining FIT and microbiota-based biomarkers into a single test. Additionally, FIT cartridges could constitute a novel data source for studying the role of the microbiome in cancer and other diseases.http://deepblue.lib.umich.edu/bitstream/2027.42/134673/1/40168_2016_Article_205.pd
- …