436 research outputs found
Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters
This study focuses on the automatic generation by the software EXGAS of
kinetic models for the oxidation of large methyl esters using a single set of
kinetic parameters. The obtained models allow to well reproduce the oxidation
of n-decane / methyl palmitate mixture in a jet-stirred reactor. This paper
also presents the construction and a comparison of models for methyl esters
from C7 up to C17 in terms f conversion in a jet-stirred reactor and of
ignition delay time in a shock tube. This comparison study showed that methyl
esters larger than methyl octanoate behave similarly and have very close
reactivities.Comment: European Combustion Meeting 2009, Vienne : Autriche (2009
First Study of the Pyrolysis of a Halogenated Ester: Methyl Chloroacetate
International audienceThe pyrolysis of a halogenated ester, methyl chloroacetate (MC), under dilute atmosphere and quasi-atmospheric pressure was studied at temperatures from 473 to 1048 K using an alumina tubular reactor. MC was chosen as a surrogate to model the thermal decomposition of ethyl bromoacetate, a chemical warfare agent. A maximum MC conversion of 99.8% was observed at a residence time of 2 s, a temperature of 1048 K, and an inlet mole fraction of 0.01. The following products were quantified: CO, CO2, HCl, methane, ethylene, ethane, propene, chloromethane, dichloromethane, vinyl chloride, chloroethane, and dichloroethane. For the first time, a detailed kinetic model of MC pyrolysis was developed and gave a good prediction of the global reactivity and the formation of most of the major products. Flow rate and sensitivity analyses were made to highlight the different pathways of decomposition during the MC pyrolysis. In a first attempt to extrapolate the results obtained with methyl chloroacetate to ethyl bromoacetate, simulations were run with a modified version of the model developed in this study taking into account the differences in bond dissociation energies induced by the change of the chlorine atom by a bromine one
Experimental and modeling study of the low-temperature oxidation of large alkanes
This paper presents an experimental and modeling study of the oxidation of
large linear akanes (from C10) representative from diesel fuel from low to
intermediate temperature (550-1100 K) including the negative temperature
coefficient (NTC) zone. The experimental study has been performed in a
jet-stirred reactor at atmospheric pressure for n-decane and a
n-decane/n-hexadecane blend. Detailed kinetic mechanisms have been developed
using computer-aided generation (EXGAS) with improved rules for writing
reactions of primary products. These mechanisms have allowed a correct
simulation of the experimental results obtained. Data from the literature for
the oxidation of n-decane, in a jet-stirred reactor at 10 bar and in shock
tubes, and of n-dodecane in a pressurized flow reactor have also been correctly
modeled. A considerable improvement of the prediction of the formation of
products is obtained compared to our previous models. Flow rates and
sensitivity analyses have been performed in order to better understand the
influence of reactions of primary products. A modeling comparison between
linear alkanes for C8 to C16 in terms of ignition delay times and the formation
of light products is also discussed
Influence of diesel surrogates on the behavior of simplified spray models
Numerous experimental investigations make use of diesel surrogates to make the computational time reasonable. In the few studies where measured (surrogate and real diesel) and computed (surrogate only) results have been compared, the selection methodology for the surrogate constituent compounds and the measures taken to validate the chemical kinetic models are not discussed, and the range of operating conditions used is often small. Additionally, most simplified models use tuning variables to fit model results to measurements. This work makes the comparison between some frequently used diesel surrogates using a simple 1D vaporizing spray model, with the spray cone angle as the tuning parameter. Results show that liquid length and fuel fraction strongly depend on the physical properties of the used fuel for a fixed spray angle. These parameters are important for modeling auto-ignition and pollutant formation. The spray angle is varied till the spray length is the same for each surrogate. Results show important differences between other spray parameters such as local mixture fraction and axial velocity
To better understand the formation of short-chain acids in combustion systems
International audienceOur study aims at a better control and understanding of the transfer of a complex [DNA supercoiled plasmid - dodecyltrimethylammonium surfactant] layer from a liquid-vapour water interface onto a silicon surface without any additional cross-linker. The production of the complexed layer and its transfer from the aqueous subphase to the substrate is achieved with a Langmuir-Blodgett device. The substrate consists of a reconstructed boron doped silicon substrate with a nanometer-scale roughness. Using X-ray photoelectron spectroscopy and atomic force microscopy measurements, it is shown that the DNA complexes are stretched in a disorderly manner throughout a 2-4 nm high net-like structure. The mechanism of transfer of this layer onto the planar surface of the semi-conductor and the parameters of the process are analysed and illustrated by atomic force microscopy snapshots. The molecular layer exhibits the typical characteristics of a spinodal decomposition pattern or dewetting features. Plasmid molecules appear like long flattened fibers covering the surface, forming holes of various shapes and areas. The cluster-cluster aggregation of the complex structure gets very much denser on the substrate edge. The supercoiled DNA plasmids undergo conformational changes and a high degree of condensation and aggregation is observed
Modeling of the formation of short-chain acids in propane flames
International audienceIn order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure
The autoignition of cyclopentane and cyclohexane in a shock tube
Ignition delay times of cyclohexane-oxygen-argon and
cyclopentane-oxygen-argon mixtures have been measured in a shock tube, the
onset of ignition being detected by OH radical emission. Mixtures contained 0.5
or 1 % of hydrocarbon for equivalence ratios ranging from 0.5 to 2. Reflected
shock waves allowed temperatures from 1230 to 1800 K and pressures from 7.3 to
9.5 atm to be obtained. These measurements have shown that cyclopentane is much
less reactive than cyclohexane, as for a given temperature the observed
autoignition delay times were about ten times higher for the C5 compound
compared to the C6. Detailed mechanisms for the combustion of cyclohexane and
cyclopentane have been proposed to reproduce these results. The elementary
steps included in the kinetic models of the oxidation of cyclanes are close to
those proposed to describe the oxidation of acyclic alkanes and alkenes.
Consequently, it has been possible to obtain these models by using an improved
version of software EXGAS, a computer package developed to perform the
automatic generation of detailed kinetic models for the gas-phase oxidation and
combustion of linear and branched alkanes and alkenes. Nevertheless, the
modelling of the oxidation of cyclanes requires to consider new types of
generic reactions, and especially to define new correlations for the estimation
of the rate constants. Ab initio calculations have been used to better know
some of the rate constants used in the case of cyclopentane. The main reaction
pathways have been derived from flow rate and sensitivity analyses
- …