942 research outputs found

    Hemispheric asymmetry in the sunspot cycle as a nonextensive phenomenon

    Full text link
    The appearance of dark sunspots over the solar photosphere is not considered to be symmetric between the northern and southern hemispheres. Among the different conclusions obtained by several authors, we can point out that the North-South asymmetry is a real and systematic phenomenon and is not due to random variability. In the present work, we selected the sunspot area data of a sample of 13 solar cycles divided by hemisphere extracted from the Marshall Space Flight Centre (MSFC) database to investigate the behavior of probability distributions using an out-of-equilibrium statistical model a.k.a non-extensive statistical mechanics. Based on this statistical framework, we obtained that the non-extensive entropic parameter qq has a semi-sinusoidal variation with a period of \sim22 year (Hale cycle). Among the most important results, we can highlight that the asymmetry index q(A)q(A) revealed the dominance of the northern hemisphere against the southern one. Thus, we concluded that the parameter q(A)q(A) can be considered an effective measure for diagnosing long-term variations of the solar dynamo. Finally, our study opens a new approach to investigating solar variability from the nonextensive perspective.Comment: 17 pages, 2 tables and 5 figures. Submitted to Solar Physic

    Morphometric Growth Characteristics and Body Composition of Fish and Amphibians

    Get PDF
    Describing animal growth through the nonlinear models allows a detailed evaluation of their behavior, besides revealing important information of the response to a particular treatment. In this chapter, the parameters of mathematical models (Gompertz, Von Bertalanffy, Logistic and Brody) for live weight, feed and protein intakes, total and standard lengths and nutrient deposition are described systematically and comprehensively. Also the relative growth and allometric coefficients of body components in relation to body weight of fish and amphibians are described, explaining better the use of the allometric equation and classifying the growth of the body components

    Salivary protein candidates for biomarkers of oral disorders in people with a crack cocaine use disorder

    Get PDF
    The use of cocaine and its main derivative, crack, can cause some systemic effects that may lead to the development of some oral disorders. Objective: To assess the oral health of people with a crack cocaine use disorder and identify salivary protein candidates for biomarkers of oral disorders. Methodology: A total of 40 volunteers hospitalized for rehabilitation for crack cocaine addiction were enrolled; nine were randomly selected for proteomic analysis. Intraoral examination, report of DMFT, gingival and plaque index, xerostomia, and non-stimulated saliva collection were performed. A list of proteins identified was generated from the UniProt database and manually revised. Results: The mean age (n=40) was 32 (±8.88; 18–51) years; the mean DMFT index was 16±7.70; the mean plaque and gingival index were 2.07±0.65 and 2.12±0.64, respectively; and 20 (50%) volunteers reported xerostomia. We identified 305 salivary proteins (n=9), of which 23 were classified as candidate for biomarkers associated with 14 oral disorders. The highest number of candidates for biomarkers was associated with carcinoma of head and neck (n=7) and nasopharyngeal carcinoma (n=7), followed by periodontitis (n=6). Conclusions: People with a crack cocaine use disorder had an increased risk of dental caries and gingival inflammation; less than half had oral mucosal alterations, and half experienced xerostomia. As possible biomarkers for 14 oral disorders, 23 salivary proteins were identified. Oral cancer and periodontal disease were the most often associated disorders with biomarkers

    Dietary sulfur amino acid restriction upregulates DICER to confer beneficial effects

    Get PDF
    Dietary restriction (DR) improves health and prolongs lifespan in part by upregulating type III endoribonuclease DICER in adipose tissue. In this study, we aimed to specifically test which missing dietary component was responsible for DICER upregulation. Methods: We performed a nutrient screen in mouse preadipocytes and validated the results in vivo using different kinds of dietary interventions in wild type or genetically modified mice and worms, also testing the requirement of DICER on the effects of the diets. Results: We found that sulfur amino acid restriction (i.e., methionine or cysteine) is sufficient to increase Dicer mRNA expression in preadipocytes. Consistently, while DR increases DICER expression in adipose tissue of mice, this effect is blunted by supplementation of the diet with methionine, cysteine, or casein, but not with a lipid or carbohydrate source. Accordingly, dietary methionine or protein restriction mirrors the effects of DR. These changes are associated with alterations in serum adiponectin. We also found that DICER controls and is controlled by adiponectin. In mice, DICER plays a role in methionine restriction-induced upregulation of Ucpl in adipose tissue. In C. elegans, DR and a model of methionine restriction also promote DICER expression in the intestine (an analog of the adipose tissue) and prolong lifespan in a DICER-dependent manner. Conclusions: We propose an evolutionary conserved mechanism in which dietary sulfur amino acid restriction upregulates DICER levels in adipose tissue leading to beneficial health effects29124135CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP305069/2015-2; 304995/2014-288887.143923/2017-002017/01184-9; 2017/07975-8; 2017/22057-5; 2015/03292-8; 2012/07259-7; 2016/02207-0; 2010/52557-0; 2015/01316-7; 2012/50558-5; 2015/19530-5We thank Elzira Elisabeth Saviani and Emanoel Cabral for valuable technical support. We thank the National Institute of Science and Technology on Photonics Applied to Cell Biology (INFABIC) at the Universidade Estadual de Campinas to provide access to microscopes, the Caenorhabditis Genetics Center (CGC) for worms and Dr. Amy Pasquinelli for the dcr-1 RNAi clone. CGC is funded by NIH Office of Research Infrastructure Programs ( P40 OD010440 ). We thank Carmen Perrone for sharing the composition of the methionine restriction diet, for valuable discussion and for sharing samples of rats exposed to methionine restriction. This study was funded by grants of the Fundação de Amparo à Pesquisa do Estado de São Paulo ( 2017/01184-9 , 2017/07975-8 , 2017/22057-5 , 2015/03292-8 , 2012/07259-7 , 2016/02207-0 , 2010/52557-0 , 2015/01316-7 , 2012/50558-5 and 2015/19530-5 ), Conselho Nacional de Desenvolvimento Científico e Tecnológico ( 305069/2015-2 and 304995/2014-2 ) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - German Academic Exchange Service ( PROBRAL - 88887.143923/2017-00 )

    Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: Effect of catalase overexpression

    Get PDF
    AbstractThe mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids
    corecore