289 research outputs found
Developing new antidotes for poisons with existing effective treatments: a case study of fomepizole in paracetamol poisoning
Introduction: Acetylcysteine is the only effective and licensed therapy for paracetamol poisoning. However, acetylcysteine loses efficacy if treatment is delayed 8–12 hours after paracetamol ingestion, and there is also uncertainty as to whether the dose should be increased in high-risk paracetamol ingestions. Studies have identified potential therapeutic targets, including enzymes that metabolize paracetamol; the pathways causing mitochondrial toxicity via c-Jun N-terminal kinases or superoxide generation; and other specific targets, such as nuclear factor-erythroid factor 2-dependent gene induction and autophagy. With this range of potential additional therapies, how should the speciality of clinical toxicology approach the development of new antidotes for this common poisoning? Historical background: When the first treatments for paracetamol toxicity were developed, the clinical trial and ethical basis of practice were different from today. Acetylcysteine was never subjected to placebo-controlled studies, even by the United States Food and Drug Administration, as it was presumed that the toxicity of high paracetamol concentrations was so evident that placebo-controlled studies were unethical. Thus, the absolute benefit of acetylcysteine remains unknown. In addition, no dose-ranging studies of acetylcysteine in patients were ever done. The weakness of assessing the efficacy of additional antidotes in small groups of patients with moderate poisoning is illustrated by the use of cimetidine in paracetamol poisoning. Current approaches to drug (and antidote) development: The approach required by regulatory authorities today relies on several important steps. First, a clear target for therapeutic effect is sought, normally in a laboratory model. Next, a ‘proof of principle’ study is required to demonstrate that the target is ‘druggable’. Finally, clinical studies to confirm proof of principle applies in humans, followed by a controlled trial with matched patient groups with sufficient power to demonstrate the clinical outcome being sought. Such patient studies can be expensive to conduct, and non-commercial groups suffer the risk of not being funded. Fomepizole: Fomepizole prevents paracetamol-induced hepatic toxicity in mice by inhibiting cytochrome P4502E1, thereby preventing the conversion of paracetamol to its toxic metabolite. Fomepizole also inhibits c-Jun N-terminal kinases, a key pathway in the downstream toxicity on the mitochondria. The present evidence of efficacy in humans is based on small case series with no control groups. The availability of a licensed indication has facilitated off-label use of fomepizole in an unproven indication. Conclusions: Paracetamol poisoning is common, and randomized, controlled clinical trials are possible. The benefit of fomepizole can only be shown by such a study. As clinical trials using fomepizole as an added therapy to acetylcysteine are recruiting in the United States, these should be supported by all clinical toxicologists. In the interim, the publication of small case series using fomepizole should be discouraged by journals.</p
New Formulation of Paraquat: A Step Forward but in the Wrong Direction?
The author discusses whether the new paraquat formulation introduced in Sri Lanka is a step forward in reducing deaths from paraquat self-poisoning
Comment on Fomepizole as an adjunct in acetylcysteine treated acetaminophen overdose patients
Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital
Acetaminophen overdose is a common reason for hospital admission and the most frequent cause of hepatotoxicity in the Western world. Early identification would facilitate patient-individualized treatment strategies. We investigated the potential of a panel of novel biomarkers (with enhanced liver expression or linked to the mechanisms of toxicity) to identify patients with acetaminophen-induced acute liver injury (ALI) at first presentation to the hospital when currently used markers are within the normal range. In the first hospital presentation plasma sample from patients (n = 129), we measured microRNA-122 (miR-122; high liver specificity), high mobility group box-1 (HMGB1; marker of necrosis), full-length and caspase-cleaved keratin-18 (K18; markers of necrosis and apoptosis), and glutamate dehydrogenase (GLDH; marker of mitochondrial dysfunction). Receiver operator characteristic curve analysis and positive/negative predictive values were used to compare sensitivity to report liver injury versus alanine transaminase (ALT) and International Normalized Ratio (INR). In all patients, biomarkers at first presentation significantly correlated with peak ALT or INR. In patients presenting with normal ALT or INR, miR-122, HMGB1, and necrosis K18 identified the development of liver injury (n = 15) or not (n = 84) with a high degree of accuracy and significantly outperformed ALT, INR, and plasma acetaminophen concentration for the prediction of subsequent ALI (n = 11) compared with no ALI (n = 52) in patients presenting within 8 hours of overdose. Conclusion: Elevations in plasma miR-122, HMGB1, and necrosis K18 identified subsequent ALI development in patients on admission to the hospital, soon after acetaminophen overdose, and in patients with ALTs in the normal range. The application of such a biomarker panel could improve the speed of clinical decision-making, both in the treatment of ALI and the design/execution of patient-individualized treatment strategies
Solution structure of the inner DysF domain of myoferlin and implications for limb girdle muscular dystrophy type 2b
Mutations in the protein dysferlin, a member of the ferlin family, lead to limb girdle muscular dystrophy type 2B and Myoshi myopathy. The ferlins are large proteins characterised by multiple C2 domains and a single C-terminal membrane-spanning helix. However, there is sequence conservation in some of the ferlin family in regions outside the C2 domains. In one annotation of the domain structure of these proteins, an unusual internal duplication event has been noted where a putative domain is inserted in between the N- and C-terminal parts of a homologous domain. This domain is known as the DysF domain. Here, we present the solution structure of the inner DysF domain of the dysferlin paralogue myoferlin, which has a unique fold held together by stacking of arginine and tryptophans, mutations that lead to clinical disease in dysferlin
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Speech Communication
Contains reports on five research projects.C.J. Lebel FellowshipNational Institutes of Health (Grant 5 T32 NSO7040)National Institutes of Health (Grant 5 R01 NS04332)National Institutes of Health (Grant 5 R01 NS21183)National Institutes of Health (Grant 5 P01 NS13126)National Institutes of Health (Grant 1 PO1-NS23734)National Science Foundation (Grant BNS 8418733)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0254)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0341)U.S. Navy - Naval Electronic Systems Command (Contract N00039-85-C-0290)National Institutes of Health (Grant RO1-NS21183), subcontract with Boston UniversityNational Institutes of Health (Grant 1 PO1-NS23734), subcontract with the Massachusetts Eye and Ear Infirmar
iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting
Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression
Herpes simplex virus and rates of cognitive decline or whole brain atrophy in the Dominantly Inherited Alzheimer Network
Objective: To investigate whether herpes simplex virus type 1 (HSV-1) infection was associated with rates of cognitive decline or whole brain atrophy among individuals from the Dominantly Inherited Alzheimer Network (DIAN). Methods: Among two subsets of the DIAN cohort (age range 19.6–66.6 years; median follow-up 3.0 years) we examined (i) rate of cognitive decline (N = 164) using change in mini-mental state examination (MMSE) score, (ii) rate of whole brain atrophy (N = 149), derived from serial MR imaging, calculated using the boundary shift integral (BSI) method. HSV-1 antibodies were assayed in baseline sera collected from 2009–2015. Linear mixed-effects models were used to compare outcomes by HSV-1 seropositivity and high HSV-1 IgG titres/IgM status. Results: There was no association between baseline HSV-1 seropositivity and rates of cognitive decline or whole brain atrophy. Having high HSV-1 IgG titres/IgM was associated with a slightly greater decline in MMSE points per year (difference in slope − 0.365, 95% CI: −0.958 to −0.072), but not with rate of whole brain atrophy. Symptomatic mutation carriers declined fastest on both MMSE and BSI measures, however, this was not influenced by HSV-1. Among asymptomatic mutation carriers, rates of decline on MMSE and BSI were slightly greater among those who were HSV-1 seronegative. Among mutation-negative individuals, no differences were seen by HSV-1. Stratifying by APOE4 status yielded inconsistent results. Interpretation: We found no evidence for a major role of HSV-1, measured by serum antibodies, in cognitive decline or whole brain atrophy among individuals at high risk of early-onset AD
- …
