33 research outputs found

    Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress

    Get PDF
    Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs

    Type One Protein Phosphatase 1 and Its Regulatory Protein Inhibitor 2 Negatively Regulate ABA Signaling

    Get PDF
    The phytohormone abscisic acid (ABA) regulates plant growth, development and responses to biotic and abiotic stresses. The core ABA signaling pathway consists of three major components: ABA receptor (PYR1/PYLs), type 2C Protein Phosphatase (PP2C) and SNF1-related protein kinase 2 (SnRK2). Nevertheless, the complexity of ABA signaling remains to be explored. To uncover new components of ABA signal transduction pathways, we performed a yeast two-hybrid screen for SnRK2-interacting proteins. We found that Type One Protein Phosphatase 1 (TOPP1) and its regulatory protein, At Inhibitor-2 (AtI-2), physically interact with SnRK2s and also with PYLs. TOPP1 inhibited the kinase activity of SnRK2.6, and this inhibition could be enhanced by AtI-2. Transactivation assays showed that TOPP1 and AtI-2 negatively regulated the SnRK2.2/3/6-mediated activation of the ABA responsive reporter gene RD29B, supporting a negative role of TOPP1 and AtI-2 in ABA signaling. Consistent with these findings, topp1 and ati-2 mutant plants displayed hypersensitivities to ABA and salt treatments, and transcriptome analysis of TOPP1 and AtI-2 knockout plants revealed an increased expression of multiple ABA-responsive genes in the mutants. Taken together, our results uncover TOPP1 and AtI-2 as negative regulators of ABA signaling. © 2016 Hou et al

    Proceedings of the Third SolACE Stakeholder Event

    Get PDF
    The third SolACE Stakeholder Event took place on October 9, 2019, in Dundee, Scotland. The event was held together with SolACE sister project TomRes – A novel and integrated approach to increase multiple and combined stress tolerance in plants using tomato as a model – and was hosted by the James Hutton Institute (JHI). The event took place as part of the SolACE and TomRes annual project meetings, providing an opportunity for exchange between the two projects

    Combined salt and low nitrate stress conditions lead to morphophysiological changes and tissue-specific transcriptome reprogramming in tomato

    Get PDF
    [EN] Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size. The mRNA sequencing performed on both roots and leaves of genotype TRPO0040 indicated that the transcriptomic signature in leaves under combined stress conditions largely overlapped that of the low N treatment, whereas root transcriptomes were highly sensitive to salt stress. Differentially expressed genes were functionally interpreted using GO and KEGG enrichment analysis, which confirmed the stress and the tissue-specific changes. We also disclosed a set of genes underlying the specific response to combined conditions, including ribosome components and nitrate transporters, in leaves, and several genes involved in transport and response to stress in roots. Altogether, our results provide a comprehensive understanding of above- and below-ground physiological and molecular responses of tomato to salt stress and low N treatment, alone or in combination.This work was supported by European Commission H2020 research and innovation program through TRADITOM grant agreement No.634561. This study was carried out within the Agritech National Research Center and received funding from the European Union Next-GenerationEU (PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) - MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.4 - D.D. 1032 June 17, 2022, CN00000022) . This manuscript reflects only the authors' views and opinions, neither the European Union nor the European Commission can be considered responsible for them.Batelli, G.; Ruggiero, A.; Esposito, S.; Venezia, A.; Lupini, A.; Nurcato, R.; Costa, A.... (2024). Combined salt and low nitrate stress conditions lead to morphophysiological changes and tissue-specific transcriptome reprogramming in tomato. Plant Physiology and Biochemistry. 215. https://doi.org/10.1016/j.plaphy.2024.10897621

    Salinity and ABA Seed Responses in Pepper: Expression and Interaction of ABA Core Signaling Components

    Get PDF
    Abscisic acid (ABA) plays an important role in various aspects of plant growth and development, including adaptation to stresses, fruit development and ripening. In seeds, ABA participates through its core signaling components in dormancy instauration, longevity determination, and inhibition of germination in unfavorable environmental conditions such as high soil salinity. Here, we show that seed germination in pepper was delayed but only marginally reduced by ABA or NaCl with respect to control treatments. Through a similarity search, pepper orthologs of ABA core signaling components PYL (PYRABACTIN RESISTANCE1-LIKE), PP2C (PROTEIN PHOSPHATASE2C), and SnRK2 (SUCROSE NONFERMENTING1 (SNF1)-RELATED PROTEIN KINASE2) genes were identified. Gene expression analyses of selected members showed a low abundance of PYL and SnRK2 transcripts in dry seeds compared to other tissues, and an up-regulation at high concentrations of ABA and/or NaCl for both positive and negative regulators of ABA signaling. As expected, in hydroponically-grown seedlings exposed to NaCl, only PP2C encoding genes were up-regulated. Yeast two hybrid assays performed among putative pepper core components and with Arabidopsis thaliana orthologs confirmed the ability of the identified proteins to function in ABA signaling cascade, with the exception of a CaABI isoform cloned from seeds. BiFC assay in planta confirmed some of the interactions obtained in yeast. Altogether, our results indicate that a low expression of perception and signaling components in pepper seeds might contribute to explain the observed high percentages of seed germination in the presence of ABA. These results might have direct implications on the improvement of seed longevity and vigor, a bottleneck in pepper breeding

    Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits

    Get PDF
    Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8M and 56.4M of 30–150bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC

    Genetic and epigenetic dynamics affecting anthocyanin biosynthesis in potato cell culture

    No full text
    Anthocyanins are antioxidant pigments widely used in drugs and food preparations. Flesh-coloured tubers of the cultivated potato Solanum tuberosum are important sources of different anthocyanins. Due to the high degree of decoration achieved by acylation, anthocyanins from potato are very stable and suitable for the food processing industry. The use of cell culture allows to extract anthocyanins on-demand, avoiding seasonality and consequences associated with land-based-tuber production. However, a well-known limit of cell culture is the metabolic instability and loss of anthocyanin production during successive subcultures. To get a general picture of mechanisms responsible for this instability, we explored both genetic and epigenetic regulation that may affect anthocyanin production in cell culture. We selected two clonally related populations of anthocyanin-producing (purple) and non-producing (white) potato cells. Through targeted molecular investigations, we identified and functionally characterized an R3-MYB, here named StMYBATV. This transcription factor can interact with bHLHs belonging to the MBW (R2R3-MYB, bHLH and WD40) anthocyanin activator complex and, potentially, may interfere with its formation. Genome methylation analysis revealed that, for several genomic loci, anthocyanin-producing cells were more methylated than clonally related white cells. In particular, we localized some methylation events in ribosomal protein-coding genes. Overall, our study explores novel molecular aspects associated with loss of anthocyanins in cell culture systems
    corecore