21 research outputs found

    Congenital leptin deficiency and leptin gene missense mutation found in two colombian sisters with severe obesity

    Get PDF
    Background: Congenital leptin deficiency is a recessive genetic disorder associated with severe early-onset obesity. It is caused by mutations in the leptin (LEP) gene, which encodes the protein product leptin. These mutations may cause nonsense-mediated mRNA decay, defective secretion or the phenomenon of biologically inactive leptin, but typically lead to an absence of circulating leptin, resulting in a rare type of monogenic extreme obesity with intense hyperphagia, and serious metabolic abnormalities. Methods: We present two severely obese sisters from Colombia, members of the same lineal consanguinity. Their serum leptin was measured by MicroELISA. DNA sequencing was performed on MiSeq equipment (Illumina) of a next-generation sequencing (NGS) panel involving genes related to severe obesity, including LEP. Results: Direct sequencing of the coding region of LEP gene in the sisters revealed a novel homozygous missense mutation in exon 3 [NM_002303.3], C350G>T [p.C117F]. Detailed information and clinical measurements of these sisters were also collected. Their serum leptin levels were undetectable despite their markedly elevated fat mass. Conclusions: The mutation of LEP, absence of detectable leptin, and the severe obesity found in these sisters provide the first evidence of monogenic leptin deficiency reported in the continents of North and South America. © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Appetite Enhancement and Weight Gain by Peripheral Administration of TrkB Agonists in Non-Human Primates

    Get PDF
    Loss of function mutations in the receptor tyrosine kinase TrkB pathway resulted in hyperphagia and morbid obesity in human and rodents. Conversely, peripheral or central stimulation of TrkB by its natural ligands BDNF or NT4 reduced body weight and food intake in mice, supporting the idea that TrkB is a key anorexigenic signal downstream of the melanocortin-4 receptor (Mc4r) system. Here we show that in non-human primates TrkB agonists were anorexigenic when applied centrally, but surprisingly orexigenic, leading to gain in appetite, body weight, fat deposits and serum leptin levels, when given peripherally. The orexigenic and pro-obesity effects of peripherally administered TrkB agonists appear to be dose dependent, not associated with fluid retention nor with evidence of receptor down regulation. Our findings revealed that TrkB signaling exerts dual control on energy homeostasis in the primates that could be targeted for the treatment of either wasting disorders or obesity

    Nonhuman primate model in clinical modeling of diseases for stem cell therapy

    No full text
    Nonhuman primates (NHPs) are alike humans in size, behavior, physiology, biochemistry, and immunology. Given close similarities to humans, the NHP model offers exceptional opportunities to understand the biological mechanisms and translational applications with direct relevance to human conditions. Here, we evaluate the opportunities and limitations of NHPs as animal models for translational regenerative medicine. NHP models of human disease propose exceptional opportunities to advance stem cell-based therapy by addressing pertinent translational concerns related to this research. Nonetheless, the value of these primates must be carefully assessed, taking into account the expense of specialized equipment and requirement of highly specialized staff. Well-designed initial fundamental studies in small animal models are essential before translating research into NHP models and eventually into human trials. In addition, we suggest that applying a directed and collaborative approach, as seen in the evolution of stroke NHP models, will greatly benefit the translation of stem cell therapy in other NHP disease models

    Selective cannabinoid-1 receptor blockade benefits fatty acid and triglyceride metabolism significantly in weight-stable nonhuman primates.

    No full text
    The goal of this study was to determine whether administration of the CB₁ cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d₃₁-tripalmitin) and intravenously (¹³C₄-palmitate, ¹³C₁-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg⁻¹·h⁻¹, P = 0.03). These data support the potential for a strong effect of CB₁ receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis

    Selective cannabinoid-1 receptor blockade benefits fatty acid and triglyceride metabolism significantly in weight-stable nonhuman primates

    No full text
    The goal of this study was to determine whether administration of the CB(1) cannabinoid receptor antagonist rimonabant would alter fatty acid flux in nonhuman primates. Five adult baboons (Papio Sp) aged 12.1 ± 4.7 yr (body weight: 31.9 ± 2.1 kg) underwent repeated metabolic tests to determine fatty acid and TG flux before and after 7 wk of treatment with rimonabant (15 mg/day). Animals were fed ad libitum diets, and stable isotopes were administered via diet (d(31)-tripalmitin) and intravenously ((13)C(4)-palmitate, (13)C(1)-acetate). Plasma was collected in the fed and fasted states, and blood lipids were analyzed by GC-MS. DEXA was used to assess body composition and a hyperinsulinemic euglycemic clamp used to assess insulin-mediated glucose disposal. During the study, no changes were observed in food intake, body weight, plasma, and tissue endocannabinoid concentrations or the quantity of liver-TG fatty acids originating from de novo lipogenesis (19 ± 6 vs. 16 ± 5%, for pre- and posttreatment, respectively, P = 0.39). However, waist circumference was significantly reduced 4% in the treated animals (P < 0.04), glucose disposal increased 30% (P = 0.03), and FFA turnover increased 37% (P = 0.02). The faster FFA flux was consistent with a 43% reduction in these fatty acids used for TRL-TG synthesis (40 ± 3 vs. 23 ± 4%, P = 0.02) and a twofold increase in TRL-TG turnover (1.5 ± 0.9 vs. 3.1 ± 1.4 μmol·kg(−1)·h(−1), P = 0.03). These data support the potential for a strong effect of CB(1) receptor antagonism at the level of adipose tissue, resulting in improvements in fasting turnover of fatty acids at the whole body level, central adipose storage, and significant improvements in glucose homeostasis
    corecore