1,959 research outputs found
Clues to Quasar Broad Line Region Geometry and Kinematics
We present evidence that the high-velocity CIV lambda 1549 emission line gas
of radio-loud quasars may originate in a disk-like configuration, in close
proximity to the accretion disk often assumed to emit the low-ionization lines.
For a sample of 36 radio-loud z~2 quasars we find the 20--30% peak width to
show significant inverse correlations with the fractional radio core-flux
density, R, the radio axis inclination indicator. Highly inclined systems have
broader line wings, consistent with a high-velocity field perpendicular to the
radio axis. By contrast, the narrow line-core shows no such relation with R, so
the lowest velocity CIV-emitting gas has an inclination independent velocity
field. We propose that this low-velocity gas is located at higher
disk-altitudes than the high-velocity gas. A planar origin of the high-velocity
CIV-emission is consistent with the current results and with an accretion
disk-wind emitting the broad lines. A spherical distribution of randomly
orbiting broad-line clouds and a polar high-ionization outflow are ruled out.Comment: 5 Latex pages, 1 figure, accepted for publication in ApJ Letter
Ions in Fluctuating Channels: Transistors Alive
Ion channels are proteins with a hole down the middle embedded in cell
membranes. Membranes form insulating structures and the channels through them
allow and control the movement of charged particles, spherical ions, mostly
Na+, K+, Ca++, and Cl-. Membranes contain hundreds or thousands of types of
channels, fluctuating between open conducting, and closed insulating states.
Channels control an enormous range of biological function by opening and
closing in response to specific stimuli using mechanisms that are not yet
understood in physical language. Open channels conduct current of charged
particles following laws of Brownian movement of charged spheres rather like
the laws of electrodiffusion of quasi-particles in semiconductors. Open
channels select between similar ions using a combination of electrostatic and
'crowded charge' (Lennard-Jones) forces. The specific location of atoms and the
exact atomic structure of the channel protein seems much less important than
certain properties of the structure, namely the volume accessible to ions and
the effective density of fixed and polarization charge. There is no sign of
other chemical effects like delocalization of electron orbitals between ions
and the channel protein. Channels play a role in biology as important as
transistors in computers, and they use rather similar physics to perform part
of that role. Understanding their fluctuations awaits physical insight into the
source of the variance and mathematical analysis of the coupling of the
fluctuations to the other components and forces of the system.Comment: Revised version of earlier submission, as invited, refereed, and
published by journa
Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions
Accurate models of alkali and halide ions in aqueous solution are necessary
for computer simulations of a broad variety of systems. Previous efforts to
develop ion force fields have generally focused on reproducing experimental
measurements of aqueous solution properties such as hydration free energies and
ion-water distribution functions. This dependency limits transferability of the
resulting parameters because of the variety and known limitations of water
models. We present a solvent-independent approach to calibrating ion parameters
based exclusively on crystal lattice properties. Our procedure relies on
minimization of lattice sums to calculate lattice energies and interionic
distances instead of equilibrium ensemble simulations of dense fluids. The gain
in computational efficiency enables simultaneous optimization of all parameters
for Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, and I- subject to constraints that
enforce consistency with periodic table trends. We demonstrate the method by
presenting lattice-derived parameters for the primitive model and the
Lennard-Jones model with Lorentz-Berthelot mixing rules. The resulting
parameters successfully reproduce the lattice properties used to derive them
and are free from the influence of any water model. To assess the
transferability of the Lennard-Jones parameters to aqueous systems, we used
them to estimate hydration free energies and found that the results were in
quantitative agreement with experimentally measured values. These
lattice-derived parameters are applicable in simulations where coupling of ion
parameters to a particular solvent model is undesirable. The simplicity and low
computational demands of the calibration procedure make it suitable for
parametrization of crystallizable ions in a variety of force fields.Comment: 9 pages, 5 table
Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain
The space- and time-dependent response of many-body quantum systems is the
most informative aspect of their emergent behaviour. The dynamical structure
factor, experimentally measurable using neutron scattering, can map this
response in wavevector and energy with great detail, allowing theories to be
quantitatively tested to high accuracy. Here, we present a comparison between
neutron scattering measurements on the one-dimensional spin-1/2 Heisenberg
antiferromagnet KCuF3, and recent state-of-the-art theoretical methods based on
integrability and density matrix renormalization group simulations. The
unprecedented quantitative agreement shows that precise descriptions of
strongly correlated states at all distance, time and temperature scales are now
possible, and highlights the need to apply these novel techniques to other
problems in low-dimensional magnetism
TOMS total ozone data compared with northern latitude Dobson ground stations
Ozone measurements from the Total Ozone Mapping Spectrometer on the Nimbus 7 satellite are compared with ground-based measurements from five Dobson stations at northern latitudes to evaluate the accuracy of the TOMS data, particularly in regions north of 50 deg N. The measurements from the individual stations show mean differences from -2.5 percent up to plus 8.3 percent relative to TOMS measurements and two of the ground stations, Oslo and Longyearbyen, show a significant drift of plus 1.2 percent and plus 3.7 percent per year, respectively. It can be shown from nearly simultaneous measurements in two different wavelength double pairs at Oslo that at least 2 percent of the differences result from the use of the CC' wavelength double pair instead of the standard AD wavelength double pair. Since all Norwegian stations used the CC' wavelength double pair exclusively a similar error can be assumed for Tromso and Longyearbyren. A comparison between the tropospheric ozone content in TOMS data and from ECC ozonesonde measurements at Ny-Alesund and Bear Island shows that the amount of tropospheric ozone in the standard profiles used in the TOMS algorithm is too low, which leads to an error of about 2 percent in total ozone. Particularly at high solar zenith angles (greater than 80 deg), Dobson measurements become unreliable. They are up to 20 percent lower than TOMS measurements averaged over solar zenith angles of 88 deg to 89 deg
Multi-source self-calibration: Unveiling the microJy population of compact radio sources
Context. Very Long Baseline Interferometry (VLBI) data are extremely
sensitive to the phase stability of the VLBI array. This is especially
important when we reach {\mu}Jy r.m.s. sensitivities. Calibration using
standard phase referencing techniques is often used to improve the phase
stability of VLBI data but the results are often not optimal. This is evident
in blank fields that do not have in-beam calibrators. Aims. We present a
calibration algorithm termed Multi-Source Self-Calibration (MSSC) which can be
used after standard phase referencing on wide-field VLBI observations. This is
tested on a 1.6 GHz wide-field VLBI data set of the Hubble Deep Field-North and
the Hubble Flanking Fields. Methods. MSSC uses multiple target sources detected
in the field via standard phase referencing techniques and modifies the
visibili- ties so that each data set approximates to a point source. These are
combined to increase the signal to noise and permit self-calibration. In
principle, this should allow residual phase changes caused by the troposphere
and ionosphere to be corrected. By means of faceting, the technique can also be
used for direction dependent calibration. Results. Phase corrections, derived
using MSSC, were applied to a wide-field VLBI data set of the HDF-N comprising
of 699 phase centres. MSSC was found to perform considerably better than
standard phase referencing and single source self-calibration. All detected
sources exhibited dramatic improvements in dynamic range. Using MSSC, one
source reached the detection threshold taking the total detected sources to
twenty. 60% of these sources can now be imaged with uniform weighting compared
to just 45% with standard phase referencing. The Parseltongue code which
implements MSSC has been released and made publicly available to the
astronomical community (https://github.com/jradcliffe5/multi_self_cal).Comment: 7 pages, 4 figures, accepted to A&
Entanglement entropy in collective models
We discuss the behavior of the entanglement entropy of the ground state in
various collective systems. Results for general quadratic two-mode boson models
are given, yielding the relation between quantum phase transitions of the
system (signaled by a divergence of the entanglement entropy) and the
excitation energies. Such systems naturally arise when expanding collective
spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a
second step, we analyze several such models (the Dicke model, the two-level BCS
model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and
investigate the properties of the entanglement entropy in the whole parameter
range. We show that when the system contains gapless excitations the
entanglement entropy of the ground state diverges with increasing system size.
We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure
Plastic flow and structural heterogeneities in silicate glasses - A high throughput investigation
Please click Additional Files below to see the full abstract
Recommended from our members
Structure and Function of Steroid Receptor RNA Activator Protein, the Proposed partner of SRA noncoding RNA
In a widely accepted model, the steroid receptor RNA activator protein (SRA protein; SRAP) modulates the transcriptional regulatory activity of SRA RNA by binding a specific stem–loop of SRA. We first confirmed that SRAP is present in the nucleus as well as the cytoplasm of MCF-7 breast cancer cells, where it is expressed at the level of about 105 molecules per cell. However, our SRAP–RNA binding experiments, both in vitro with recombinant protein and in cultured cells with plasmid-expressed protein and RNA, did not reveal a specific interaction between SRAP and SRA. We determined the crystal structure of the carboxy-terminal domain of human SRAP and found that it does not have the postulated RRM (RNA recognition motif). The structure is a five-helix bundle that is distinct from known RNA-binding motifs and instead is similar to the carboxy-terminal domain of the yeast spliceosome protein PRP18, which stabilizes specific protein–protein interactions within a multisubunit mRNA splicing complex. SRA binding experiments with this domain gave negative results. Transcriptional regulation by SRA/SRAP was examined with siRNA knockdown. Effects on both specific estrogen-responsive genes and genes identified by RNA-seq as candidates for regulation were examined in MCF-7 cells. Only a small effect (~ 20% change) on one gene resulting from depletion of SRA/SRAP could be confirmed. We conclude that the current model for SRAP function must be reevaluated; we suggest that SRAP may function in a different context to stabilize specific intermolecular interactions in the nucleus
Density hardening plasticity and mechanical aging of silica glass under pressure: A Raman spectroscopic study
In addition of a flow, plastic deformation of structural glasses (in
particular amorphous silica) is characterized by a permanent densification.
Raman spectroscopic estimators are shown to give a full account of the plastic
behavior of silica under pressure. While the permanent densification of silica
has been widely discussed in terms of amorphous-amorphous transition, from a
plasticity point of view, the evolution of the residual densification with the
maximum pressure of a pressure cycle can be discussed as a density hardening
phenomenon. In the framework of such a mechanical aging effect, we propose that
the glass structure could be labelled by the maximum pressure experienced by
the glass and that the saturation of densification could be associated with the
densest packing of tetrahedra only linked by their vertices
- …