2,144 research outputs found

    Multi-species mean-field spin-glasses. Rigorous results

    Full text link
    We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington-Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all densities values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica symmetric and the replica symmetry breaking bounds are proved using Guerra's scheme. The annealed approximation is proved to be exact under a high temperature condition. We show that the replica symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimise it within a ziggurat ansatz. The generalized order parameter is described by a Parisi-like partial differential equation.Comment: 17 pages, to appear in Annales Henri Poincar\`

    Quasi-Static Brittle Fracture in Inhomogeneous Media and Iterated Conformal Maps: Modes I, II and III

    Full text link
    The method of iterated conformal maps is developed for quasi-static fracture of brittle materials, for all modes of fracture. Previous theory, that was relevant for mode III only, is extended here to mode I and II. The latter require solution of the bi-Laplace rather than the Laplace equation. For all cases we can consider quenched randomness in the brittle material itself, as well as randomness in the succession of fracture events. While mode III calls for the advance (in time) of one analytic function, mode I and II call for the advance of two analytic functions. This fundamental difference creates different stress distribution around the cracks. As a result the geometric characteristics of the cracks differ, putting mode III in a different class compared to modes I and II.Comment: submitted to PRE For a version with qualitatively better figures see: http://www.weizmann.ac.il/chemphys/ander

    Nonequlibrium particle and energy currents in quantum chains connected to mesoscopic Fermi reservoirs

    Get PDF
    We propose a model of nonequilibrium quantum transport of particles and energy in a system connected to mesoscopic Fermi reservoirs (meso-reservoir). The meso-reservoirs are in turn thermalized to prescribed temperatures and chemical potentials by a simple dissipative mechanism described by the Lindblad equation. As an example, we study transport in monoatomic and diatomic chains of non-interacting spinless fermions. We show numerically the breakdown of the Onsager reciprocity relation due to the dissipative terms of the model.Comment: 5pages, 4 figure

    Transport and dynamics on open quantum graphs

    Full text link
    We study the classical limit of quantum mechanics on graphs by introducing a Wigner function for graphs. The classical dynamics is compared to the quantum dynamics obtained from the propagator. In particular we consider extended open graphs whose classical dynamics generate a diffusion process. The transport properties of the classical system are revealed in the scattering resonances and in the time evolution of the quantum system.Comment: 42 pages, 13 figures, submitted to PR

    Non-equilibrium Lorentz gas on a curved space

    Full text link
    The periodic Lorentz gas with external field and iso-kinetic thermostat is equivalent, by conformal transformation, to a billiard with expanding phase-space and slightly distorted scatterers, for which the trajectories are straight lines. A further time rescaling allows to keep the speed constant in that new geometry. In the hyperbolic regime, the stationary state of this billiard is characterized by a phase-space contraction rate, equal to that of the iso-kinetic Lorentz gas. In contrast to the iso-kinetic Lorentz gas where phase-space contraction occurs in the bulk, the phase-space contraction rate here takes place at the periodic boundaries

    The replica symmetric behavior of the analogical neural network

    Full text link
    In this paper we continue our investigation of the analogical neural network, paying interest to its replica symmetric behavior in the absence of external fields of any type. Bridging the neural network to a bipartite spin-glass, we introduce and apply a new interpolation scheme to its free energy that naturally extends the interpolation via cavity fields or stochastic perturbations to these models. As a result we obtain the free energy of the system as a sum rule, which, at least at the replica symmetric level, can be solved exactly. As a next step we study its related self-consistent equations for the order parameters and their rescaled fluctuations, found to diverge on the same critical line of the standard Amit-Gutfreund-Sompolinsky theory.Comment: 17 page

    A Hebbian approach to complex network generation

    Full text link
    Through a redefinition of patterns in an Hopfield-like model, we introduce and develop an approach to model discrete systems made up of many, interacting components with inner degrees of freedom. Our approach clarifies the intrinsic connection between the kind of interactions among components and the emergent topology describing the system itself; also, it allows to effectively address the statistical mechanics on the resulting networks. Indeed, a wide class of analytically treatable, weighted random graphs with a tunable level of correlation can be recovered and controlled. We especially focus on the case of imitative couplings among components endowed with similar patterns (i.e. attributes), which, as we show, naturally and without any a-priori assumption, gives rise to small-world effects. We also solve the thermodynamics (at a replica symmetric level) by extending the double stochastic stability technique: free energy, self consistency relations and fluctuation analysis for a picture of criticality are obtained

    Stress field around arbitrarily shaped cracks in two-dimensional elastic materials

    Full text link
    The calculation of the stress field around an arbitrarily shaped crack in an infinite two-dimensional elastic medium is a mathematically daunting problem. With the exception of few exactly soluble crack shapes the available results are based on either perturbative approaches or on combinations of analytic and numerical techniques. We present here a general solution of this problem for any arbitrary crack. Along the way we develop a method to compute the conformal map from the exterior of a circle to the exterior of a line of arbitrary shape, offering it as a superior alternative to the classical Schwartz-Cristoffel transformation. Our calculation results in an accurate estimate of the full stress field and in particular of the stress intensity factors K_I and K_{II} and the T-stress which are essential in the theory of fracture.Comment: 7 pages, 4 figures, submitted for PR
    • …
    corecore