661 research outputs found

    Perspectives on innovation within medium-sized firms in Wales

    Get PDF
    The Welsh economy is heading towards a post-Brexit future with historically lower levels of productivity continuing to leave the country lagging behind the UK average (Huggins and Williams, 2011; Welsh Government, 2017). An understanding of how new models of innovation are constructed and developed are then particularly important for policy makers and academia in Wales. As noted by Baughan (2015), innovation accounts for 25-50% of labour productivity growth

    Reviews

    Get PDF
    Authoring‐Systems Software for Computer‐Based Training, edited by William D. Wilheim, Educational Technology Publications, Englewood Cliffs, New Jersey, USA, ISBN: 0–87778–274–1, 1994

    Press release: Chrysler Workforce Expansion

    Get PDF
    A method is presented for determining paths of anatomical connection between regions of the brain using magnetic resonance diffusion tensor information. Level set theory, applied using fast marching methods, is used to generate three-dimensional time of arrival maps, from which connection paths between brain regions may be identified. The method is demonstrated in the normal brain and it is shown that major white matter tracts may be elucidated and that multiple connections and tract branching are allowed. Maps of connectivity between brain regions are also determined. Four options are described for estimating the degree of connectivity between regions

    A critical role for long-term potentiation mechanisms in the maintenance of object recognition memory in perirhinal cortex revealed by the infusion of zeta inhibitory pseudosubstrate

    Get PDF
    Object recognition, the ability to discriminate between a novel and a familiar stimulus, is critically dependent upon the perirhinal cortex. Neural response reductions upon repetition of a stimulus, have been hypothesized to be the mechanism within perirhinal cortex that supports recognition memory function. Thus, investigations into the mechanisms of long-term depression (LTD) in perirhinal cortex has provided insight into the mechanism of object recognition memory formation, but the contribution of long-term potentiation (LTP) to object recognition memory formation has been less studied. Inhibition of atypical PKC activity by Zeta Inhibitory Pseudosubstrate (ZIP) impairs the maintenance of LTP but not LTD, thus here infusion of ZIP into the perirhinal cortex allowed us to investigate the contribution of LTP-like mechanisms to object recognition memory maintenance. Infusion of ZIP into the perirhinal cortex of rats 24 h after the sample phase impaired performance in an object recognition but not an object location task, in contrast infusion of ZIP into the hippocampus impaired performance in an object location but not an object recognition task. The impairment in object recognition by ZIP was prevented by administration of the peptide GluA2(3y), which blocks the endocytosis of GluA2 containing AMPA receptors. Finally, performance in a perceptual oddity task, which requires perirhinal cortex function, was not disrupted by ZIP. Together these results demonstrate the importance of LTP-like mechanisms to the maintenance of object recognition memory in the perirhinal cortex

    Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach

    Get PDF
    Progressive supranuclear palsy (PSP), multiple system atrophy (MSA) and idiopathic Parkinson’s disease (IPD) can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs). An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i) a subcortical motor network; (ii) each of its component regions and (iii) the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process
    corecore