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ABSTRACT 

The medial prefrontal cortex (mPFC) is known to be critical for specific forms of long-term 

recognition memory, however the cellular mechanisms in the mPFC that underpin memory 

maintenance have not been well characterised.  This study examined the importance of 

phosphorylation of cAMP responsive element binding protein (CREB) in the mPFC for different 

forms of long-term recognition memory in the rat.  Adenoviral transduction of the mPFC with 

a dominant-negative inhibitor of CREB impaired object-in-place memory following a 6h or 24h 

retention delay, but no impairment was observed following delays of 5min or 3h.  Long-term 

object temporal order memory and spatial temporal order memory was also impaired.  In 

contrast, there were no impairments in novel object recognition or object location memory.  

These results establish, for the first time, the importance of CREB phosphorylation within the 

mPFC for memory of associative and temporal information crucial to recognition.  

 

INTRODUCTION 

Neural activity within the frontal lobes is crucial for declarative memory processing.  Patients 

with lesions in the prefrontal cortex (PFC) show impairments in both episodic memory (Rugg 

and Vilberg 2013) and in the recognition of stimuli associated with specific spatial and 

temporal information (Kopelman et al. 1997; Zhang et al. 2018) and fMRI studies have 

revealed activation in PFC subregions during associative recognition and temporal order 

memory (Dobbins et al., 2003; St Jacques et al. 2008; Park et al., 2012; Roberts et al., 2018).  

More selective recording and lesion studies in non-human primates and rodents, have 

demonstrated a role for the orbital or medial PFC (mPFC) in delayed matching to sample, 

object-in-place recognition memory and temporal order memory (Mitchell and Laiacona 

1998; Hannesson et al. 2004ab; Browning et al. 2005; Johnston and Everling, 2006; Baxter et 

al. 2007; Barker et al. 2007; Barker and Warburton 2011a). Thus, across species evidence 

strongly points to an involvement of the mPFC in associative and recency memory.  

In the rat in vivo electrophysiological recording studies have revealed populations of neurons 

in the mPFC, which display object and context-dependent modulation (Weible et al. 2012; 
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Hyman et al. 2012; Kim et al. 2011;2013;2018). Such firing patterns may thus represent a 

cellular mechanism for recognition memory involving spatio-temporal information, although 

these mechanisms have been reported to operate over relatively short timescales.  The 

intracellular mechanisms that support the formation and long-term storage of such memories 

in the mPFC have been little investigated, perhaps in part because traditionally the prefrontal 

cortex has been associated with short-term memory processing (Baddeley, 1992). 

For long-term memory formation, phosphorylation of the transcription factor cAMP 

responsive element binding protein (CREB) has been shown to be a critical step in other brain 

regions. Inactivation of CREB in the hippocampus has been shown to  impair contextual fear 

and spatial memory (Silva et al. 1998; Kida et al. 2002)   in the perirhinal cortex CREB 

inactivation impaired long-term object recognition memory (Warburton et al. 2005) and in 

the mPFC disruption of CREB signalling impaired object-location memory in a delay-

dependent manner (Vieira and Korzus 2015).  Enhancement of CREB function in the amygdala 

has been shown to improve fear memory (Josselyn et al. 2001) and expression of CREB binding 

protein has been shown to increase in the mPFC following fear learning (Siddiqui et al. 2017).  

Thus, CREB activation in the mPFC may be a key step in the maintenance of object recognition 

memory yet this hypothesis has not yet been tested.    

Here we investigated the effect of blocking CREB phosphorylation in the mPFC on the 

formation of object-in-place, temporal order and temporal location associative recognition 

memory using a virus expressing a dominant-negative inhibitor of CREB (here denoted A-

CREB).  The A-CREB construct consists of an acidic amphipathic extension that replaces the 

natural basic region fused on to the N terminus of the CREB leucine domain.  The acidic 

extension interacts with the basic region of endogenous CREB-forming a coiled-coil extension 

of the leucine zipper and preventing CREB from binding DNA and initiating CRE-mediated 

transcription.  We have previously used this approach to investigate the importance of CREB 

phosphorylation to recognition memory formation in the perirhinal cortex region of the 

medial temporal lobe (Warburton et al. 2005).  
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Figure 1: Diagram of the spontaneous object recognition 

tasks used: (a) Object-in-place task, (b) object temporal 

order task, (c) object temporal location task, (d) object 

recognition task, (e) object location task, (f)   EGFP expression 

in the prelimbic (PL) and infralimbic (IL) region of the mPFC 

after infusion of adenoviral vector.  Image taken at +3.2 from 

bregma (β). 
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RESULTS 
 
Histology 
Both control and A-CREB adenoviral vectors were tagged with enhanced green fluorescent 
protein (EGFP) for visualisation.  Infusion of the vectors produced localised transgene 
expression, in all animals, centred in the prelimbic/infralimbic (PL/IL) region of mPFC at the 
injection site, +3.2mm AP from bregma (Figure 1f). Expression was observed up to 0.5mm 
from the injection site both in the anterior and posterior direction and throughout the dorsal-
ventral extent of PL and IL, although expression was restricted to a 150µM width in the 
mediolateral direction.  Transgene expression was observed in the anterior cingulate cortex 
particularly in that region adjacent to PL but only at the injection site. There was minimal 
tissue damage as assessed by cresyl violet staining. 
 
Disruption of CREB phosphorylation impairs long term object-in-place memory formation 
 
To examine the effects of CREB-disruption in the mPFC on object-in-place memory, we 
injected one group of rats with the virus expressing a dominant negative inhibitor of CREB (A-
CREB group) while a second group of rats received a virus expressing EGFP only (EGFP group) 
as a control group.  In the sample phase of the object-in-place the subject was placed in the 
arena to explore four different objects (Fig. 1a). After a delay period, the rat was replaced in 
the arena, which contained the four same objects, but two of the objects had exchanged 
position   Discrimination between two objects which had exchanged position and the two 
objects which were in the same position (Fig. 1a) was calculated using a discrimination ratio 
(DR) which controlled for individual differences in exploration levels.  Object-in-place memory 
performance was assessed after four different retention delays (5min, 3h, 6h and 24h) in four 
separate runs.  Consistent with our previous studies it was predicted that control animals will 
spend more time exploring the moved objects compared to the unmoved objects across each 
delay, and thus demonstrate memory for both the objects and the places in which they were 
previously encountered. 
 
As overall object exploration levels could have an effect on memory encoding,  we examined 
such exploration during different stages of the task and found no differences during the 
sample phase between the A-CREB and EGFP groups in any of the delay conditions [delay x 
virus interaction F(3,72)=0.12, p=0.95].  Similarly, there were no differences in total object 
exploration during the test phase in any of the delay conditions [delay x virus interaction 
F(3,72)=0.29, p=0.83].   The mean sample and test phase exploration for each condition at 
each delay is shown in Table 1.    
 
Fig. 2a shows the mean DR for the EGFP and A-CREB  groups at each retention delay and it 
can be seen that  object-in-place memory was impaired in the A-CREB group at the longer (6h 
and 24h) but not at the shorter retention delays (5min, 3h) while performance in the EGFP 
group was unimpaired at any of the delays tested.  Statistical analyses revealed a significant 
delay x virus interaction [F(3,72)= 10.36, p=0.0001] and post hoc analyses showed a significant 
difference between the memory performance of the A-CREB and EGFP rats at the longer 
delays (6h p=0.0001; 24h p=0.0001) but not at the shorter delays (5min p=0.650; 3h p=0.702).  
 



 

5 
 

UOB Open 

 
 

Delay Condition Exploration in 
sample phase 
(s) 

Exploration in 
test phase (s) 

5min 
EGFP 86.3±6.5 32.0±3.77 

A-CREB 100.1±4.2 33.6±3.1 

3h 
EGFP 73.3±7.6 35.4±2.5 

A-CREB 81.5±5.0 39.0±2.2 

6h 
EGFP 66.3±4.3 29.5±4.2 

A-CREB 79.7±3.8 38.5±1.9 

24h 
EGFP 88.7±5.9 40.0±3.2 

A-CREB 103.3±4.7 47.2±3.6 

 

Table 1: Total object exploration times during the sample and test phases of the object in 

place task. Data presented as mean ± SEM (n=10). 
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Figure 2 Blockade of CREB function in the medial prefrontal cortex impaired long-term but 

not short-term associative recognition memory formation and did not alter long-term non-

associative recognition memory formation. (a) Blockade of CREB function in the medial 

prefrontal cortex impaired long-term, but not short-term object-in-place memory.  T-tests 

comparing the discrimination ratios of each group against chance performance revealed that 

at the 5min and 3h delays, both the EGFP and A-CREB groups showed significant object-in-

place discrimination [5min EGFP t(9) =7.08, p=0.0001, A-CREB t(9) = 12.95, p =0.0001; 3h EGFP 

t(9) =6.11, p=0.0001, A-CREB t(9) = 10.87, p =0.0001]. In contrast at the 6h and 24h delay the 

EGFP group showed significant discrimination [6h t(9) 9.50, p=0.0001; 24h t(9) =7.131, 

p=0.0001] whereas the A-CREB group did not [6h t(9) =-0.13 p=0.899; 24h t(9) =0.30, p=0.77].    

(b)  Blockade of CREB function in the medial prefrontal cortex impaired long-term, but not 

short-term temporal order memory.  T-tests comparing the discrimination ratios of each 
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group against chance performance revealed that at the 3h delay both the EGFP and A-CREB 

groups showed significant discrimination between the object presented in S2 and S3 [EGFP 

t(9) = 4.09, p=0.003; A-CREB t(9) = 5.25, p=0.001].  At the 6h delay the EGFP group showed 

significant discrimination [t(9) =3.27, p=0.010] while the A-CREB did not show significant 

discrimination [t(9) = -0.91, p=0.385].  (c) Blockade of CREB function in the medial prefrontal 

cortex impaired long-term, but not short-term temporal location memory.  T-tests comparing 

the discrimination ratios of each group against chance performance revealed that at the 3h 

delay both the EGFP and A-CREB groups showed significant discrimination between the object 

presented in S2 and S3 [EGFP t(9) = 3.54, p=0.006; A-CREB t(9) = 9.24, p=0.000].  At the 6h delay 

the EGFP group showed significant discrimination [t(9) =5.62, p=0.000] while the A-CREB did 

not show significant discrimination [t(9) =-0.12, p=0.91]. (d) Blockade of CREB function in the 

medial prefrontal cortex had no effect on novel object recognition or object location memory. 

T-tests comparing the discrimination ratios against chance performance revealed that all 

groups showed significant discrimination between the novel and familiar objects in the object 

recognition task [EGFP t(9)=8.060, p=0.000; A-CREB t(9)= 5.61, p=0.000].  Both groups also 

showed significant discrimination between the moved and unmoved objects in the object 

location task [EGFP t(9)=4.23, p=0.002; A-CREB t(9)= 7.00, p=0.000]. Data presented as mean 

+sem. ***P<0.001. 

 
 Disruption of CREB phosphorylation impairs long term temporal order memory formation 
 
We next examined performance in a temporal order memory task in which the subjects were 
presented with objects in a sequence of four sample phases (S1-S4).  In the test phase, the 
objects from S2 and S3, were presented and exploration of these objects measured.  Memory 
for order was expressed by the preferential exploration of the object which had occurred 
earlier in the series i.e. object from S2 (Figure 1b).  Memory performance was calculated as a 
DR.   
 
The A-CREB and EGFP groups showed the same levels of object exploration during each of the 
four sample phases [sample phase x virus x delay interaction F(3,108) = 1.20, p=0.31 n.s.] and 
in the test phase [delay by virus interaction F(1,36)= 0.87, p=0.36 n.s.].   The mean sample and 
test phase exploration at each delay is shown in Table 2.     
 
Fig. 2b shows the mean DR for the EGFP and A-CREB groups following either 3h  or 6h 

retention delay.   Discrimination was significantly lower in the A-CREB compared to the EGFP 

group at the longer delay only [delay x virus interaction F(1,36)=4.33, p=0.045] confirmed by 

post hoc analyses showing a significant difference between the EGFP and A-CREB groups at 

the 6h delay (p=0.006) but not at the 3h delay (p=0.92).  
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Task Delay Condition Exploration in sample phase (s) Exploration 
in test 
phase (s) 

S1 S2 S3 S4 

Object 
temporal 
order 

3h EGFP 50.4±4.0 55.1±5.3 61.6±5.4 35.5±4.4 37.0±3.3 

A-CREB 54.4±4.7 57.5±4.8 45.3±4.4 48.0±5.3 38.0±3.7 

6h EGFP 55.0±5.8 51.1±6.4 40.1±4.3 46.1±6.5 34.9±5.1 

A-CREB 56.8±3.8 41.4±6.0 34.5±5.8 49.3±5.4 28.4±2.6 

Temporal 
location 

3h EGFP 43.2±5.1 43.3±3.5 46.5±6.5 43.4±3.4 24.2±2.4 

A-CREB 41.1±5.4 52.9±2.8 49.9±5.6 42.9±5.7 26.8±4.5 

6h EGFP 23.4±2.6 29.8±3.3 38.0±4.7 34.4±2.2 27.3±2.6 

A-CREB 29.2±2.0 26.8±6.7 39.0±8.6 32.5±3.4 27.4±2.5 

 

Table 2: Total object exploration completed in the sample phases and the test phases of the 

object temporal order and the temporal location tasks. Data presented as mean ± SEM (n=10). 

 

Disruption of CREB phosphorylation impairs object temporal location 

Activity within the mPFC is required for object associative and object temporal memory 
performance, thus we next examined the requirement for CREB activity in the mPFC for object 
temporal location memory.  Here, the animal was presented with the same object but in a 
sequence of four different locations across four sample phases (Fig. 1c).  In the test phase, 
the animal was presented with two objects, one in location from S2, one in location S3. Intact 
memory for the order of locations was expressed by preferential exploration of the object in 
the location that appeared earlier in the list (i.e. S2). Again, memory performance was 
assessed using the DR.  
 
Both the A-CREB and EGFP groups completed the same amount of exploration in each of the 
sample phases and between the sample phases [sample phase x virus x delay interaction 
F(3,108) = 1.12, p=0.35].  There was also no difference in object exploration between the 
groups in the test phase [delay x virus interaction F(1,36)= 0.15, p=0.70]. The mean sample 
and test phase exploration at each delay is shown in Table 2.    
 
Fig.2c shows the mean DR for the EGFP and A-CREB groups following either the 3h or 6h delay. 

Statistical analysis revealed a significant delay by virus interaction [F(1,36)=15.14, p=0.000] 

and post hoc analyses showed that memory performance in the A-CREB group was 

significantly reduced compared to control at the 6h retention delay (p=0.003) but there was 

no difference between the groups at the 3h delay (p=0.071).  
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Disruption of CREB phosphorylation in the mPFC has no effect on novel object recognition 

or object location memory 

To establish the selectivity of the mnemonic effects of CREB disruption in the mPFC, we tested 

the A-CREB and EGFP groups in a novel object recognition task (Fig. 1d), and an object location 

task (Fig. 1e),  both tasks previously shown to be unaffected by mPFC ablation (Barker et al., 

2007).  In novel object recognition task, the animals are presented with two identical objects 

and in the test phase, one of the objects is replaced with a novel object.  In the object location 

task, the animals explore two identical objects in the sample phase, and in the test phase one 

of the objects is moved to a new location. Intact memory is expressed by preferential 

exploration of the novel or moved object.   

The A-CREB and EGFP groups completed the same amount of object exploration during the 

sample phase  [F(1,18) = 3.396, p=0.082] and test phase [F(1,18)= 0.80, p=0.38] of the novel 

object recognition test.  Statistical analysis of memory performance revealed a non-significant 

main effect of virus [F(1,18)=0.174, p=0.68] thus there was no effect of  blocking CREB 

function in the PFC on novel object recognition (Fig. 2d).  In the object location task there was 

a difference in the amount of object exploration in the sample phase  [F(1,18) = 6.038, 

p=0.024] and inspection of the group means revealed that this difference was a result of 

greater sample phase exploration in the A-CREB group compared to the EGFP group. There 

was no difference in object exploration in the test phase [F(1,18)=2.659, p=0.12] and no 

difference in memory performance [F(1,18)= 0.34, p=0.86] (Fig.2d), hence there was no effect 

of  blocking CREB function in the mPFC  on object location memory. The sample and test phase 

exploration during each task is shown in Table 3.    

 

 

Task Condition Time taken 
to complete 
sample 
phase (s). 

Exploration in 
sample phase 
(s). 

Exploration in 
test phase (s). 

Object 
recognition 

EGFP 162.8±23.1 36.5±1.5 29.8±2.6 

A-CREB 153.4±19.6 39.4±0.3 32.8±1.6 

Object location 
EGFP n/a 45.1±2.9 30.1±1.9 

A-CREB n/a 54.6±2.2 35.0±2.2 

 

Table 3: Total object exploration completed in the sample and test phases of the object 

recognition and object location tasks. Data presented as mean ± SEM (n=10). 
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DISCUSSION 

CREB activity is a key regulator in the formation of long-term memory and here we show that 

selective disruption of CREB phosphorylation in the mPFC, impaired long-term object-in-place 

associative recognition memory, object temporal order memory, and spatial temporal order 

memory.  In contrast, there were no impairments in novel object recognition or object 

location memory, further there was no effect on performance at the shortest retention delays 

tested (i.e. 5 min or 3h).  Finally, there were no changes in the animals’ overall object 

exploration behaviour during either the sample or test phases.  Together these results show 

that the deficits in recognition performance were not a result of a general attentional or 

motor deficits, but rather that disruption of CREB function in the mPFC specifically impaired 

long-term associative memory performance.   

We have previously established the cellular and behavioural functionality of the adenoviral 

mediated dominant-negative construct A-CREB used in this study. Thus Warburton et al., 

(2005) reported that expression of A-CREB selectively in the perirhinal cortex produced a 40% 

reduction in overall pCREB levels, and impaired long-term (24h delay), but not short-term 

(15min) single item novel object recognition memory.  Here histological analysis revealed 

transgene expression restricted along the dorsoventral extent of the prelimbic and infralimbic 

cortex of the mPFC, with only minimal expression in the anterior cingulate cortex.   

Previous studies have shown that the mPFC is not required for familiarity discrimination or 

simple spatial tasks (Hannesson et al. 2004b; Barker et al. 2007, but see Vieira and Korzus, 

2015) likewise here disruption of CREB activity in the mPFC did not affect novel object 

recognition or object location. Significantly the present study found deficits in object-in-place 

memory following both a 6h and 24h retention delay, but not at 5min or 3h. A retention delay 

of 6h is much shorter than had been investigated in previous studies (Bourtchuladze et al. 

1994; Guzowski and McGaugh 1997; Peters et al. 2009), and the deficit at this timepoint 

indicates that CREB phosphorylation is an important step in a cellular pathway for the 

stabilization of memory information between 3h and 6h following learning.  From our 

previous studies initiation of this cellular pathway appears to depend on the activation of 

specific receptor subtypes in the mPFC such as the NMDA and D1/D5 receptor and blockade 

of these receptors impairs both object-in-place (Barker and Warburton 2008, 2011b; Savalli 

et al. 2015), and temporal order memory (Hotte et al. 2006) and interestingly  activation of 

the NMDA and D1/D5 receptors has been shown to be crucial for CREB phosphorylation 

(Pittenger et al. 2002; Hotte et al. 2006; Olianas et al. 2012; Kirschmann et al. 2014; Nygard 

et al. 2017).  CREB expression is regulated at transcriptional level by epigenetic mechanisms 

such as  DNA methylation (Chahrour et al. 2008) and we have shown that disruption of DNA 

methylation impairs long-term object-in-place memory (Chahrour et al. 2008; Scott et al. 

2017).  Hence there are direct links between receptor activation, CREB-mediated cellular 

processes and gene expression in the mPFC, that leads to the long-term associative and 

temporal order recognition memory formation.  

Previous studies have demonstrated that the PFC plays an important role in sequence 
behaviours specifically within the context of short-term memory, where delay-period activity 
in the PFC has been reported to represent temporal order, as well as a number of other 
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variables (Funahashi, 2017; Naya et al., 2017).  Here temporal order memory for objects or 
locations was demonstrated by preferential exploration of the object in the location 
encountered earlier in the sequence.  There are at least two possible mechanisms that may 
drive discrimination; either recency/ memory strength i.e. animals have weaker memory for 
the ‘older’ information i.e. that encoded during sample phase 2 compared to sample phase 
3, or the animals remember the order of locations encountered.     While some have argued 
that memory strength or trace decay drives the behaviour  (Staddon and Higa, 1999) recent 
data from our lab shows that manipulations of the length of the inter-sample interval, which 
should disproportionately affect memory strength compared to memory for order, have little 
effect on performance (Barker et al. 2019).  Hence, we would suggest that animals are making 
order judgements, at least in part, independent of memory strength, although the latter 
cannot be completely excluded. It should also be considered that while neural activity in the 
mPFC is crucial for maintenance of information to guide behaviour (for a recent review see 
Miller et al., 2018)  processing of multiple stimuli as is required for temporal order memory, 
will be  vulnerable to interference due to its limited capacity.  Here four objects or positions 
were used and order memory for the middle items examined to avoid primary and recency 
effects associated with the first and last items,  thus we did not explore the impact of 
manipulation of  PFC processing on different order effects in the present study.  Alternatively, 
the mPFC may play a more general role in integration and discrimination of information 
encoded within overlapping representations, possibly via an interaction with the 
hippocampus (DeVito et al. 2010; Schlichting and Preston, 2015; Morton et al. 2017).  Indeed, 
successful object-in-place and object and spatial temporal order memory require prefrontal-
hippocampal interactions (Barker and Warburton 2011; Barker et al. 2017). 
 

In conclusion selective disruption of CREB phosphorylation within the mPFC impaired object-

in-place, temporal order and temporal location memory, following delays greater than 6h.  

This finding suggests the existence of a common intracellular CREB-dependent mechanism for 

long-term recognition memory formation of associative and temporal information.  The 

cellular processes of memory stabilization in the mPFC parallel those in other regions of the 

cortex i.e. the perirhinal cortex that have been shown to be required for single item object 

recognition memory. However, the precise molecular pathway has yet to be established.  

Further work is now required to define the precise interactions that comprise the molecular 

networks within PFC neurons, and the nature of the memory information consolidated within 

the mPFC.  

    

METHODS 

Subjects 

All experiments were conducted in male Lister hooded rats (Harlan Laboratories,  UK,) 
weighing 300-350g at the start of the experiments.  The animals were group housed, under a 
12-h/12-h light/dark cycle (light phase 18:00 – 6:00 h).   Behavioural training and testing were 
conducted during the dark phase of the cycle.  Food and water were available ad libitum 
throughout the experiment. All animal procedures were performed in accordance with United 
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Kingdom Animals Scientific Procedures Act (1986) and associated guidelines. All efforts were 
made to minimize any suffering and the number of animals used. 

Adenoviral preparation 

Recombinant E1-deleted Ad constructs were produced according to standard techniques 
(Harding et al., 1998).  The cDNA for the reporter contrast enhanced green-fluorescent 
protein (EGFP), was excised from pEGFP1 (Clontech, Cambridge, UK) using HindIII and XbaI 
and inserted into the corresponding site in the multiple cloning site of the plasmid pXCXCMV 
(Harding et al., 1998).  The cDNAs for CREB and the dominant-negative A-CREB were 
expressed bicistronically with EGFP by cloning each individually onto the same Ad transfer 
plasmid.  Recombinant virus was generated by homologous recombination in human 
embryonic kidney 293 cells (Microbix Biosystems, Toronto, Canada), grown to a high titer and 
purified by CsCl density gradient centrifugation.  Viral titer was determined by plaque assay: 
Ad-CMV-EGFP was 1 x 1010 pfu/ml, and Ad-CMV-A-CREB was 1 x 1010 pfu/ml. 

Surgery 

Each rat was anaesthetised with isoflurane (induction 4%, maintenance 2-3%) and secured 
in a stereotaxic frame with the incisor bar set at -3.5mm below the interaural line, in order 
to obtain flat skull.  The scalp was then cut and retracted to expose the skull. Craniotomies 
were then made directly above the target regions, and the dura cut to expose the cortex. 

Viral particles were delivered bilaterally into the medial prefrontal cortex (AP+3.2mm; 
ML±0.5mm, DV -4.3mm) in 2.0µl per hemisphere at a rate of 200nL/min.  Animals were 
allowed to recover for three weeks before behavioural testing commenced. 

 

Histology 

Following completion of the experiments, each rat was anaesthetised with Euthetal (Rhône 
Mérieux) and perfused transcardially with phosphate-buffered saline followed by 4% 
paraformaldehyde.  After removal the brain was post-fixed in paraformaldehyde for 24h 
before being transferred to 30% sucrose in 0.2M phosphate buffer for 48h.  Coronal sections 
were cut at 40µm on a cryostat.  Alternate sections were Nissl stained with cresyl violet or 
mounted directly onto slide using Vectorshield (Vector Laboratories, Burlingame, CA) 
coverslipped and examined using a fluorescent microscope (Leica DM6 B); 

 

Behavioural Protocols (Figs 1a-e) 

Object exploration occurred in a wooden open topped arena 90x100cm with walls 50cm high.  
Object exploration was video recorded for subsequent analysis.  The stimuli presented were 
objects composed of Duplo blocks (Lego UK Ltd, Slough, UK) that varied in shape, colour and 
size (9 x 8 x 7 cm to 25 x 15 x 10 cm) and were too heavy for the animal to displace.  

Habituation was conducted over four days prior to the commencement of behavioural 
testing. On days one and two animals were habituated to the arena for 15min with their cage 
mates, on days three and four, each animal was placed individually in the arena for 5mins. 
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Object-in-place memory.  This task comprised a sample and test phase, separated by delays 
of 5min, 3h, 6h or 24h.  Performance at each retention delay was examined in different 
experiments each with a sample and test phase using different quartets of objects.  In each 
sample phase (5min duration) the rats explored four different objects.  In the test phase (3min 
duration), two of the objects exchanged positions, see Fig. 1a.  The rats were tested at the 
different delay conditions in an interleaved manner with an interval of 3-7 days between 
experiments. 
 
Object temporal order memory.  This task comprised 4 sample phases (S1-S4) separated by a 
one-hour inter-sample interval (ISI) in which different objects were presented.  During the 
sample phases (4min duration each) the rats were presented with two copies of the object 
for  4min.    The test phase occurred either 1h or 4h following S4, to give a retention delay 
between S2 and test phase of either 3h or 6h.   In the test phase (3min duration) the rats were 
presented with objects from S2 and S3, see Fig. 1b. 
 
Object temporal location memory.  This task involved 4 sample phases (S1-S4) separated by a 
1h ISI.  In each 4min sample phase, the rats encountered one object, the position of which 
changed.  The test phase (3min duration) occurred either 1h or 4h following the end of S4, as 
in the temporal order task.  In the test phase the rats were presented with two objects, one 
in the S2 location and the other in the S3 location, see Fig. 1c.   
 
Novel object recognition memory.   In the sample phase (4min duration) the rat explored 2 
identical objects.  In the test phase (3min duration), 24h later, rats were placed back in the 
arena, which now contained the sample phase object and a novel object, see Fig. 1d. 
 
Object location memory.  In the sample phase (4min duration) the rat explored two identical 
objects.  In the test phase (3min duration) conducted 24h later the rat was placed back in the 
arena which contained the object from the sample phase in the same position as in the sample 
phase and an identical object was in a novel location, see Fig. 1e. 
 
 
Assessment of object exploration and recognition memory performance  
 
The amount of time the animal spent exploring each object during the sample and test 
phases, during each task, was scored by the experimenter, blind to the animals’ condition.   
Exploration was strictly defined as the animal directing its nose towards the object at a 
distance of < 2 cm.   From the time spent exploring the objects during the test phase, a 
discrimination ratio (DR) was calculated to assess recognition memory.  In the object-in-place 
memory task the DR was calculated from the difference in the time spent exploring the 
objects that had changed position compared to the objects that had remained in the same 
position.  In the object temporal order memory and temporal location memory tasks the DR 
was calculated from a comparison of the time spent exploring the objects from S2 and S3. In 
the novel object recognition memory task, the DR was calculated from the difference in time 
spent exploring the novel compared to the familiar object(s) divided by the total time spent 
exploring all objects during the test phase.  In the object location memory task, the DR was 
calculated from the difference in time spent exploring the moved and unmoved objects.   
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Statistical analysis  
The sample size for each experiment was determined by previous studies conducted in both 
our and other laboratories.  Power calculations on previously reported data (Barker et al. 
2006; Barker and Warburton, 2011a) collected in our laboratory suggest that to achieve a 
power of 0.8, a group size of eight is required.  Larger sample sizes were used to allow for 
maintenance of power should animals be excluded following histological analysis. 
 
Memory performance between groups was compared using ANOVA analyses using SPSS 

(IBM).  Statistical analyses were designed using an assumption of normal distribution and 

similar variance, but this was not formally tested.  Performance in all the tasks used was 

compared using a two-way mixed design ANOVA with virus (EGFP or A-CREB) as the between 

subject factor and delay or sample phase (in the object temporal order or temporal location) 

as the within-subjects factor. Post-hoc tests used a Bonferroni correction for multiple 

comparisons. In addition to test whether each group of animals could significantly 

discriminate between objects or pairs of objects within each task, the discrimination ratios of 

each condition was compared to zero (chance performance) using a one-sample t-test (two-

tailed).   
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