113 research outputs found
Effets de défauts de coulage sur la micro-fissuration des dalles minces en béton fibré à ultrahaute performance - étude par stéréovision et corrélation d'images digitales
Le béton fibré à ultrahaute performance (BFUP) est reconnu pour sa grande résistance en compression et sa grande ductilité. De plus, il est maintenant bien connu que le comportement du BFUP dépend grandement de l’orientation des fibres par rapport à la direction de sa sollicitation. Cependant, peu d’informations sont disponibles dans la littérature à propos de l’impact de la discontinuité locale des fibres causée par un défaut de coulage dans un mélange de BFUP. Dans ce mémoire de maîtrise, un protocole de laboratoire est développé afin de mesurer l’impact de la présence de défauts dans le béton fibré à ultrahaute performance. Ce protocole de laboratoire se base sur un système de mesures photogrammétriques de corrélation d’images digitales. Cette technique permet d’acquérir des mesures de déformations et de déplacements avec l’aide d’une paire de caméras numériques à haute résolution. Un post-traitement informatique des images prises lors de l’essai permet de récréer un modèle 3D de la surface de l’échantillon observé. Avec l’aide de cette nouvelle méthode de mesure, il est possible de présenter différents aspects du comportement non linéaire de ce matériel. Lors de ce projet, six dalles avec ou sans défaut ont été soumises à un effort flexionnel avec une charge ponctuelle. En développant un protocole de laboratoire adapté aux besoins de ce projet, la corrélation d’images numériques a permis d’obtenir des résultats très précis. Une attention particulière est portée sur l’impact des différents défauts sur le comportement mécanique global de la dalle et sur l’endommagement local lors de la fissuration.Ultra-high performance fiber reinforced concrete (UHPFRC) is well known for its great compressive resistance and its ductility. Furthermore, it is also well known that UHPFRC strongly depends on fibers’ orientations relatively to the direction of stresses. However, little is documented in the literature about the impact of local fiber discontinuity caused by casting defect. In this MSc thesis, a laboratory protocol is developed in order to measure the impact of the presence of defects in a UHPFRC slab on the mechanical response. This protocol is based on a system of photogrammetric measurement by digital image correlation (DIC). This technique allows the precise measure of the deformation as well as the displacement with help of a pair of high resolution digital camera. A computer-based post treatment analysis of these pictures is used to create a 3D model of the observed sample surface. With this new analysis method, it is possible to present different aspect of the non-linear behavior of this material. During this project, 6 different geometries of slab with and without casting defect were submitted to flexional stress by punctual loading. By developing a laboratory protocol adapted to this project, digital image correlation analysis gave a multitude of very precise results. A specific attention is made to the impact of the defect on the global mechanical behavior as well as the local damaging caused by the micro-cracks
Waking EEG functional connectivity in middle-aged and older adults with obstructive sleep apnea
Objectives: The present study aimed at investigating changes in waking electroencephalography
(EEG), most specifically regarding spectral power and functional connectivity, in middle-aged and
older adults with OSA. We also explored whether changes in spectral power or functional
connectivity are associated with polysomnographic characteristics and/or neuropsychological
performance.
Methods: 19 OSA subjects (apnea-hypopnea index ≥ 20, age: 63.6 ± 6.4) and 22 controls (apneahypopnea index ≤ 10, age: 63.6 ± 6.7) underwent a full night of in-laboratory polysomnography
followed by a waking EEG and a neuropsychological assessment. Waking EEG spectral power
and imaginary coherence were compared between groups for all EEG frequency bands and scalp
regions. Correlation analyses were performed between selected waking EEG variables,
polysomnographic parameters and neuropsychological performance.
Results: No group difference was observed for EEG spectral power for any frequency band.
Regarding the imaginary coherence, when compared to controls, OSA subjects showed decreased
EEG connectivity between frontal and temporal regions in theta and alpha bands as well as
increased connectivity between frontal and parietal regions in delta and beta 1 bands. In the OSA
group, these changes in connectivity correlated with lower sleep efficiency, lower total sleep time
and higher apnea-hypopnea index. No relationship was found with neuropsychological
performance.
Conclusions: Contrary to spectral power, imaginary coherence was sensitive enough to detect
changes in brain function in middle-aged and older subjects with OSA when compared to controls.
Whether these changes in cerebral connectivity predict cognitive decline needs to be investigated
longitudinally
Structural elements made with highly flowable UHPFRC: Correlating computational fluid dynamics (CFD) predictions and non-destructive survey of fiber dispersion with failure modes
Structural design with highly flowable Fibre Reinforced Concrete has to duly take into account the preferential alignment of fibers, which can be governed through the rheological properties of the fluid mixture and the casting process and by the geometry of the structure. The possibility of predicting the fiber alignment, by tailoring the casting process, and of non-destructively monitoring it, can foster more efficient structural applications and design approaches.
Focusing on UHPFRC slabs with pre-arranged casting defects, the flow-induced alignment of the fibers has been predicted by means of a suitable CFD modelling approach and hence monitored via a non-destructive method based on magnetic inductance properties of the fiber reinforced composite. The comparison between the assessed data on the fiber orientation and the crack patterns as visualized by image analysis supports the effectiveness of casting flow modelling and non-destructive fiber dispersion monitoring in supporting the structural design of elements made with highly flowable fiber reinforced cementitious composites
VASAO: visible all sky adaptive optics: a new adaptive optics concept for CFHT
International audienceVASAO is an ambitious project that explores new conceptual direction in the field of astronomical adaptive optics. In the era of 8 meter and larger telescopes, and their instrument costs and telescope time pressure, there is a natural niche for such ground-breaking conceptual development in the 4 meter class telescope. The aim of VASAO is to provide diffraction limited imaging in the visible with 100% sky coverage; the challenge (but potential rewards) arises from the simultaneity of these requirements. To this end, CFHT is conducting a feasibility study based on the polychromatic guide star concept (Foy et al., 1995 [4]) coupled with a high order curvature AO system, presented in this paper. A number of experiments have been started (or carried out) to study the challenges and limits of the techniques involved in an operational setting; these include the FlyEyes detector, and a polychromatic tip-tilt test on natural stars. Because such a project straddles such a fine line between facility instrument and experimental facility, careful thought has to be given to the balance between modes of operations and potential astrophysical targets
Sleep spindles are resilient to extensive white matter deterioration
Sleep spindles are an essential part of non-rapid eye movement sleep, notably involved in sleep consolidation, cognition, learning
and memory. These oscillatory waves depend on an interaction loop between the thalamus and the cortex, which relies on a structural backbone of thalamo-cortical white matter tracts. It is still largely unknown if the brain can properly produce sleep spindles
when it underwent extensive white matter deterioration in these tracts, and we hypothesized that it would affect sleep spindle generation and morphology. We tested this hypothesis with chronic moderate to severe traumatic brain injury (n ¼ 23;
30.5 6 11.1 years old; 17 m/6f), a unique human model of extensive white matter deterioration, and a healthy control group
(n ¼ 27; 30.3 6 13.4 years old; 21m/6f). Sleep spindles were analysed on a full night of polysomnography over the frontal, central
and parietal brain regions, and we measured their density, morphology and sigma-band power. White matter deterioration was
quantified using diffusion-weighted MRI, with which we performed both whole-brain voxel-wise analysis (Tract-Based Spatial
Statistics) and probabilistic tractography (with High Angular Resolution Diffusion Imaging) to target the thalamo-cortical tracts.
Group differences were assessed for all variables and correlations were performed separately in each group, corrected for age and
multiple comparisons. Surprisingly, although extensive white matter damage across the brain including all thalamo-cortical tracts
was evident in the brain-injured group, sleep spindles remained completely undisrupted when compared to a healthy control group.
In addition, almost all sleep spindle characteristics were not associated with the degree of white matter deterioration in the braininjured group, except that more white matter deterioration correlated with lower spindle frequency over the frontal regions. This
study highlights the resilience of sleep spindles to the deterioration of all white matter tracts critical to their existence, as they conserve normal density during non-rapid eye movement sleep with mostly unaltered morphology. We show that even with such a severe traumatic event, the brain has the ability to adapt or to withstand alterations in order to conserve normal sleep spindles
Periostin is up-regulated in high grade and high stage prostate cancer
BACKGROUND: Expression of periostin is an indicator of epithelial-mesenchymal transition in cancer but a detailed analysis of periostin expression in prostate cancer has not been conducted so far. METHODS: Here, we evaluated periostin expression in prostate cancer cells and peritumoural stroma immunohistochemically in two independent prostate cancer cohorts, including a training cohort (n = 93) and a test cohort (n = 325). Metastatic prostate cancers (n = 20), hormone refractory prostate cancers (n = 19) and benign prostatic tissues (n = 38) were also analyzed. RESULTS: In total, strong epithelial periostin expression was detectable in 142 of 418 (34.0%) of prostate carcinomas and in 11 of 38 benign prostate glands (28.9%). Increased periostin expression in carcinoma cells was significantly associated with high Gleason score (p < 0.01) and advanced tumour stage (p < 0.05) in the test cohort. Whereas periostin expression was weak or absent in the stroma around normal prostate glands, strong periostin expression in tumour stroma was found in most primary and metastatic prostate cancers. High stromal periostin expression was associated with higher Gleason scores (p < 0.001). There was a relationship between stromal periostin expression and shortened PSA relapse free survival times in the training cohort (p < 0.05). CONCLUSIONS: Our data indicate that periostin up-regulation is related to increased tumour aggressiveness in prostate cancer and might be a promising target for therapeutical interventions in primary and metastatic prostate cancer
Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea
IntroductionObstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer’s disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance.MethodsNinety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate.ResultsIn the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns.DiscussionOSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer’s disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated
- …