10 research outputs found

    Large Thermoelectricity via Variable Range Hopping in Chemical Vapor Deposition Grown Single-Layer MoS<sub>2</sub>

    No full text
    Ultrathin layers of semiconducting molybdenum disulfide (MoS<sub>2</sub>) offer significant prospects in future electronic and optoelectronic applications. Although an increasing number of experiments bring light into the electronic transport properties of these crystals, their thermoelectric properties are much less known. In particular, thermoelectricity in chemical vapor deposition grown MoS<sub>2</sub>, which is more practical for wafer-scale applications, still remains unexplored. Here, for the first time, we investigate these properties in grown single layer MoS<sub>2</sub>. Microfabricated heaters and thermometers are used to measure both electrical conductivity and thermopower. Large values of up to ∼30 mV/K at room temperature are observed, which are much larger than those observed in other two-dimensional crystals and bulk MoS<sub>2</sub>. The thermopower is strongly dependent on temperature and applied gate voltage with a large enhancement at the vicinity of the conduction band edge. We also show that the Seebeck coefficient follows <i>S</i> ∼ <i>T</i><sup>1/3</sup>, suggesting a two-dimensional variable range hopping mechanism in the system, which is consistent with electrical transport measurements. Our results help to understand the physics behind the electrical and thermal transports in MoS<sub>2</sub> and the high thermopower value is of interest to future thermoelectronic research and application

    Graphene–Ferroelectric Hybrid Structure for Flexible Transparent Electrodes

    No full text
    Graphene has exceptional optical, mechanical, and electrical properties, making it an emerging material for novel optoelectronics, photonics, and flexible transparent electrode applications. However, the relatively high sheet resistance of graphene is a major constraint for many of these applications. Here we propose a new approach to achieve low sheet resistance in large-scale CVD monolayer graphene using nonvolatile ferroelectric polymer gating. In this hybrid structure, large-scale graphene is heavily doped up to 3 × 10<sup>13</sup> cm<sup>–2</sup> by nonvolatile ferroelectric dipoles, yielding a low sheet resistance of 120 Ω/□ at ambient conditions. The graphene–ferroelectric transparent conductors (GFeTCs) exhibit more than 95% transmittance from the visible to the near-infrared range owing to the highly transparent nature of the ferroelectric polymer. Together with its excellent mechanical flexibility, chemical inertness, and the simple fabrication process of ferroelectric polymers, the proposed GFeTCs represent a new route toward large-scale graphene-based transparent electrodes and optoelectronics

    Nanometer Thick Elastic Graphene Engine

    No full text
    Significant progress has been made in the construction and theoretical understanding of molecular motors because of their potential use. Here, we have demonstrated fabrication of a simple but powerful 1 nm thick graphene engine. The engine comprises a high elastic membrane-piston made of graphene and weakly chemisorbed ClF<sub>3</sub> molecules as the high power volume changeable actuator, while a 532 nm LASER acts as the ignition plug. Rapid volume expansion of the ClF<sub>3</sub> molecules leads to graphene blisters. The size of the blister is controllable by changing the ignition parameters. The estimated internal pressure per expansion cycle of the engine is about ∼10<sup>6</sup> Pa. The graphene engine presented here shows exceptional reliability, showing no degradation after 10 000 cycles

    Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization

    No full text
    Graphene has been employed as transparent electrodes in organic solar cells (OSCs) because of its good physical and optical properties. However, the electrical conductivity of graphene films synthesized by chemical vapor deposition (CVD) is still inferior to that of conventional indium tin oxide (ITO) electrodes of comparable transparency, resulting in a lower performance of OSCs. Here, we report an effective method to improve the performance and long-term stability of graphene-based OSCs using electrostatically doped graphene films via a ferroelectric polymer. The sheet resistance of electrostatically doped few layer graphene films was reduced to ∼70 Ω/sq at 87% optical transmittance. Such graphene-based OSCs exhibit an efficiency of 2.07% with a superior stability when compared to chemically doped graphene-based OSCs. Furthermore, OSCs constructed on ultrathin ferroelectric film as a substrate of only a few micrometers show extremely good mechanical flexibility and durability and can be rolled up into a cylinder with 7 mm diameter

    Bandgap Engineering of Phosphorene by Laser Oxidation toward Functional 2D Materials

    No full text
    We demonstrate a straightforward and effective laser pruning approach to reduce multilayer black phosphorus (BP) to few-layer BP under ambient condition. Phosphorene oxides and suboxides are formed and the degree of laser-induced oxidation is controlled by the laser power. Since the band gaps of the phosphorene suboxide depend on the oxygen concentration, this simple technique is able to realize localized band gap engineering of the thin BP. Micropatterns of few-layer phosphorene suboxide flakes with unique optical and fluorescence properties are created. Remarkably, some of these suboxide flakes display long-term (up to 2 weeks) stability in ambient condition. Comparing against the optical properties predicted by first-principle calculations, we develop a “calibration” map in using focused laser power as a handle to tune the band gap of the BP suboxide flake. Moreover, the surface of the laser patterned region is altered to be sensitive to toxic gas by way of fluorescence contrast. Therefore, the multicolored display is further demonstrated as a toxic gas monitor. In addition, the BP suboxide flake is demonstrated to exhibit higher drain current modulation and mobility comparable to that of the pristine BP in the electronic application

    Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms

    No full text
    Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating

    Transport Properties of Monolayer MoS<sub>2</sub> Grown by Chemical Vapor Deposition

    No full text
    Recent success in the growth of monolayer MoS<sub>2</sub> via chemical vapor deposition (CVD) has opened up prospects for the implementation of these materials into thin film electronic and optoelectronic devices. Here, we investigate the electronic transport properties of individual crystallites of high quality CVD-grown monolayer MoS<sub>2</sub>. The devices show low temperature mobilities up to 500 cm<sup>2</sup> V<sup>–1</sup> s<sup>–1</sup> and a clear signature of metallic conduction at high doping densities. These characteristics are comparable to the electronic properties of the best mechanically exfoliated monolayers in literature, verifying the high electronic quality of the CVD-grown materials. We analyze the different scattering mechanisms and show that the short-range scattering plays a dominant role in the highly conducting regime at low temperatures. Additionally, the influence of optical phonons as a limiting factor is discussed

    Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport

    No full text
    The technical breakthrough in synthesizing graphene by chemical vapor deposition methods (CVD) has opened up enormous opportunities for large-scale device applications. To improve the electrical properties of CVD graphene grown on copper (Cu-CVD graphene), recent efforts have focused on increasing the grain size of such polycrystalline graphene films to 100 μm and larger. While an increase in grain size and, hence, a decrease of grain boundary density is expected to greatly enhance the device performance, here we show that the charge mobility and sheet resistance of Cu-CVD graphene is already limited within a single grain. We find that the current high-temperature growth and wet transfer methods of CVD graphene result in quasi-periodic nanoripple arrays (NRAs). Electron-flexural phonon scattering in such partially suspended graphene devices introduces anisotropic charge transport and sets limits to both the highest possible charge mobility and lowest possible sheet resistance values. Our findings provide guidance for further improving the CVD graphene growth and transfer process

    Colossal Ultraviolet Photoresponsivity of Few-Layer Black Phosphorus

    No full text
    Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10<sup>13</sup> Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10<sup>4</sup> A W<sup>–1</sup> by applying a source-drain bias (<i>V</i><sub>SD</sub>) of 3 V, which is the highest ever measured in any 2D material and 10<sup>7</sup> times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature
    corecore