38 research outputs found

    Three-dimensional inelastic analysis for hot section components, BEST 3D code

    Get PDF
    The goal is the development of an alternative stress analysis tool, distinct from the finite element method, applicable to the engineering analysis of gas turbine engine structures. The boundary element method was selected for this development effort on the basis of its already demonstrated applicability to a variety of geometries and problem types characteristic of gas turbine engine components. Major features of the BEST3D computer program are described, and some of the significant developments carried out as part of the Inelastic Methods Contract are outlined

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    In the present work, the boundary element method (BEM) is chosen as the basic analysis tool, principally because the definition of temperature, flux, displacement and traction are very precise on a boundary-based discretization scheme. One fundamental difficulty is, of course, that a BEM formulation requires a considerable amount of analytical work, which is not needed in the other numerical methods. Progress made toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-Orbit engine hot section components is reported. The primary thrust of the program to date has been directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms

    Development of an integrated BEM approach for hot fluid structure interaction

    Get PDF
    The development of a boundary element formulation for the study of hot fluid-structure interaction in earth-to-orbit engine hot section components is described. The initial primary thrust of the program to date was directed quite naturally toward the examination of fluid flow, since boundary element methods for fluids are at a much less developed state. This required the development of integral formulations for both the solid and fluid, and some preliminary infrastructural enhancements to a boundary element code to permit coupling of the fluid-structure problem. Boundary element formulations are implemented in two dimensions for both the solid and the fluid. The solid is modeled as an uncoupled thermoelastic medium under plane strain conditions, while several formulations are investigated for the fluid. For example, both vorticity and primitive variable approaches are implemented for viscous, incompressible flow, and a compressible version is developed. All of the above boundary element implementations are incorporated in a general purpose two-dimensional code. Thus, problems involving intricate geometry, multiple generic modeling regions, and arbitrary boundary conditions are all supported

    Asymmetric Quantum Dialogue in Noisy Environment

    Full text link
    A notion of asymmetric quantum dialogue (AQD) is introduced. Conventional protocols of quantum dialogue are essentially symmetric as both the users (Alice and Bob) can encode the same amount of classical information. In contrast, the scheme for AQD introduced here provides different amount of communication powers to Alice and Bob. The proposed scheme, offers an architecture, where the entangled state and the encoding scheme to be shared between Alice and Bob depends on the amount of classical information they want to exchange with each other. The general structure for the AQD scheme has been obtained using a group theoretic structure of the operators introduced in (Shukla et al., Phys. Lett. A, 377 (2013) 518). The effect of different types of noises (e.g., amplitude damping and phase damping noise) on the proposed scheme is investigated, and it is shown that the proposed AQD is robust and uses optimized amount of quantum resources.Comment: 11 pages, 2 figure

    Lower bound of the expressibility of ansatzes for Variational Quantum Algorithms

    Full text link
    The expressibility of an ansatz used in a variational quantum algorithm is defined as the uniformity with which it can explore the space of unitary matrices. The expressibility of a particular ansatz has a well-defined upper bound. In this work, we show that the expressibiliity also has a well-defined lower bound in the hypothesis space. We provide an analytical expression for the lower bound of the covering number, which is directly related to expressibility. We also perform numerical simulations to to support our claim. To numerically calculate the bond length of a diatomic molecule, we take hydrogen (H2H_2) as a prototype system and calculate the error in the energy for the equilibrium energy point for different ansatzes. We study the variation of energy error with circuit depths and show that in each ansatz template, a plateau exists for a range of circuit depths, which we call the set of acceptable points, and the corresponding expressibility is known as the best expressive region. We report that the width of this best expressive region in the hypothesis space is inversely proportional to the average error. Our analysis reveals that alongside trainability, the lower bound of expressibility also plays a crucial role in selecting variational quantum ansatzes

    Controlled transportation of mesoscopic particles by enhanced spin orbit interaction of light in an optical trap

    Full text link
    We study the effects of the spin orbit interaction (SOI) of light in an optical trap and show that the propagation of the tightly focused trapping beam in a stratified medium can lead to significantly enhanced SOI. For a plane polarized incident beam the SOI manifests itself by giving rise to a strong anisotropic linear diattenuation effect which produces polarization-dependent off-axis high intensity side lobes near the focal plane of the trap. Single micron-sized asymmetric particles can be trapped in the side lobes, and transported over circular paths by a rotation of the plane of input polarization. We demonstrate such controlled motion on single pea-pod shaped single soft oxometalate (SOM) particles of dimension around 1×0.5μ1\times 0.5\mum over lengths up to \sim15 μ\mum . The observed effects are supported by calculations of the intensity profiles based on a variation of the Debye-Wolf approach. The enhanced SOI could thus be used as a generic means of transporting mesoscopic asymmetric particles in an optical trap without the use of complex optical beams or changing the alignment of the beam into the trap.Comment: 9 pages, 7 figure
    corecore