499 research outputs found

    Thermal behaviour of alum-(Rb) RbAl(SO4)2 · 12H2O from in-situ laboratory high-temperature X-ray powder diffraction data

    Get PDF
    The present work investigates in-situ the thermal behaviour of alum-(Rb), RbAl(SO4)2 · 12H2O, by high-temperature X-ray powder diffraction from 303 K to melting, which starts at 359 K and is completed, due to kinetics, at 363 K. The calculated a0 linear thermal expansion coefficient is 10.33(12) x 10-6 K-1 within the investigated thermal range. The k order parameter, which is the measure of the extension of the orientational disorder of the sulphate group, decreases from ca. 0.80 at 303 K to ca. 0.75 just before melting. This behaviour has been shown to depend on the need to keep the bond valence sum of the Rb+ cation, which coexists in both six- and seven-fold coordination, at a reasonable value of ca. 0.82 valence units

    Erionite-Na upon heating. Dehydration dynamics and exchangeable cations mobility

    Get PDF
    Erionite is a fibrous zeolite significantly more tumorigenic than crocidolite asbestos upon inhalation. In recent years, several papers have been published aimed at characterizing from the crystal-chemical point of view erionite fibres. As their toxicity has been ascribed to Fe acquired within the human body, studies aimed at characterizing the iron topochemistry have also been published, suggesting a possible important role played by the ionic exchange properties and cations mobility of this zeolite on developing carcinogenicity. Here we report the analysis results of the thermal behaviour of erionite-Na, which has been found to deviate significantly from that of erionite-K. This result is in contrast with the current scientific view that differences in weighted ionic potential, Si/Al ratio and size of exchangeable cations result in significantly different thermal behaviours, all those parameters being nearly identical or very similar in both species. The different mobility of the extraframework cations observed in erionite samples with dissimilar chemistry is of particular interest within the frame of the hypothesis that their biological activity could depend, apart from surface interactions, also on bulk effects

    Chemical and structural characterization of fibrous richterite with high environmental and health relevance from Libby, Montana (USA)

    Get PDF
    This study reports new structural and spectroscopic data of a sample of fibrous richterite from Libby, Montana (USA). The OH-stretching region was investigated by FT-IR. The spectrum showed, except for the typical absorption band at 3671 cm-1 assigned to the vibration of the O-H dipole bonded to three [6]Mg cations, a well developed band at 3658 cm-1 attributed to the M(1)+M(3)Fe2+ environment. The M(1)+M(3)Fe2+ occupancy calculated using the FT-IR data is in very good agreement with that obtained combining Mössbauer and EMP data. Fe3+ was only assigned at M(2) owing to the absence in FT-IR spectrum of absorption bands at Δ=-50 cm-1 from the tremolite reference band. Structural investigation was done by X-ray powder-diffraction using the Rietveld method. Cell parameters, fractional coordinates for all non-hydrogen atoms, and site scattering for M(1), M(2), M(3), M(4) and A were refined. The most relevant difference with respect to prismatic winchite is a general reduction of the cell parameters that is ascribed mainly to the higher fluorine content of fibrous richterite. Possible site occupancies were obtained by combining chemical data and Rietveld refinement results

    Curcumin-loaded zeolite as anticancer drug carrier: Effect of curcumin adsorption on zeolite structure

    Get PDF
    In this work we used a combination of different techniques to investigate the adsorption properties of curcumin by zeolite type A for potential use as an anticancer drug carrier. Curcumin is a natural water-insoluble drug that has attracted great attention in recent years due to its potential anticancer effect in suppressing many types of cancers, while showing a synergistic antitumor effect with other anticancer agents. However, curcumin is poorly soluble in aqueous solutions leading to the application of high drug dosage in oral formulations. Zeolites, inorganic crystalline aluminosilicates with porous structure on the nano- and micro-scale and high internal surface area, can be useful as pharmaceutical carrier systems to encapsulate drugs with intrinsic low aqueous solubility and improve their dissolution. Here, we explore the use of zeolite type A for encapsulation of curcumin, and we investigate its surface properties and morphology, before and after loading of the anticancer agent, using scanning electron microscopy (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and UV-vis spectroscopy. Results are used to assess the loading efficiency of zeolite type A towards curcumin and its structural stability after loading

    Thermally induced behavior of the K-exchanged erionite. A further step in understanding the structural modifications of the erionite group upon heating

    Get PDF
    Fibrous erionite is a naturally occurring zeolite considered to be highly carcinogenic upon inhalation, even more than crocidolite. Since no iron is typically present in erionite, its toxicity has been attributed to ion-exchanged Fe participating in Fenton chemistry. Recently, a study aimed at investigating possible fiber inactivation routes surprisingly showed that, despite having completely occluded all available pores with K ions, the erionite-Na sample preserved the property to upload Fe (II) within the structure. In this work, the thermal behavior of the K-exchanged erionite-Na was investigated by TG/ DSC and in situ XRPD analyses in order to provide relevant information for modeling the thermally induced behavior of the erionite group. Rietveld refinement results evidenced a general trend of cell parameters and volume with temperature similar to that observed for erionite-K from Rome (Oregon, USA). However, the dependence of Tdehydrand Tbreakfrom Si/Si+Al ratio observed in zeolites (high Si content favours a lower Tdehydrand a higher Tbreak) is not observed, possibly due to the effect of the relevant amount of large K ions dispersed within the erionite cage, acting as reinforcing blocks for the framework. Heating produces a progressive emptying of the Ca sites, common effect previously observed in erionite samples showing different chemistry. In addition, K1 s.s. remains unchanged evidencing the absence of any “internal ion exchange” process, whereas s.s. at K2 increases in the range 438-573 K and then slowly decreases in the range 700-1218 K. Both Rietveld and DSC data suggest the motion of K ions from OW sites toward the walls of the erionite cavity during dehydration

    The mechanism of iron binding processes in erionite fibres

    Get PDF
    Fibrous erionite-Na from Rome (Oregon, USA) was K-exchanged and characterized from the structural point of view. In addition, the modifications experienced after contact with a Fe(II) source were investigated for evaluating if the large potassium ions, blocking off nearly all the erionite cavity openings, might prevent the Fe(II) binding process, which is currently assumed to be one of the reasons of the toxicity of erionite. The K-exchanged sample had a 95% reduction of the BET surface area indicating that it behaves as a mesoporous material. Exchanged K is segregated at K2 and at OW sites commonly occupied by H2O. The latter K cations provide a relevant contribution to the reduction of the surface area. Surprisingly, despite the collapse of its surface area the sample preserves the tendency to bind Fe(II). Therefore, yet in the case of a peculiar and potentially hostile structural environment the Fe(II) ion-exchange process has essentially the same kinetics observed in a typical erionite sample. This is a clear evidence of the very limited effect of the chemical composition of erionite on the Fe(II) binding process and reasonably it does not play a significant role in its toxicity

    In situ high‑temperature behaviour and breakdown conditions of uvite at room pressure

    Get PDF
    The thermal behaviour of an uvite from San Piero in Campo (Elba Island, Italy) was investigated at room pressure through in situ high-temperature powder X-ray diffraction (PXRD), until the breakdown conditions were reached. The variation of uvite structural parameters (unit-cell parameters and mean bond distances) was monitored together with site occupancies and we observed the thermally induced Fe oxidation process counterbalanced by (OH)− deprotonation, which starts at 450 °C and is completed at 650 °C. The uvite breakdown reaction occurs between 800 and 900 °C. The breakdown products were identified at room temperature by PXRD and the breakdown reaction can be described as follows: tourmaline → indialite + yuanfuliite + plagioclase + “boron-mullite” phase + hematite

    Prismatic to asbestiform offretite from Northern Italy. Occurrence, morphology and crystal-chemistry of a new potentially hazardous zeolite

    Get PDF
    A multi-methodological approach, based upon field investigation, morphological characterization, chemical analysis and structure refinement was applied to different samples of fibrous offretite, a new potentially hazardous zeolite recently discovered in northern Italy. Their morphology ranges from stocky-prismatic to asbestiform. All the investigated fibers may be considered as "inhalable", and they are well within the range of the "more carcinogenic fibers" regarding diameter. As regards the length, the main mode observed in the asbestiform samples is 20-25 mu m, and similar to 93% of the measured fibers are >5 mu m and may be significantly associated with carcinogenesis also in terms of lengths. The chemical-structural features of the investigated fibers are comparable: the extra-framework cations K+, Mg2+ and Ca2+ are present in all samples in similar proportions, and refined cell parameters are similar among the samples. Offretite occurs in 60% of the investigated sites, with an estimated amount up to 75 vol % of the associated minerals. The presence of this mineral could be of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks

    The crystal structure of sacrofanite, the 74 Å phase of the cancrinite–sodalite supergroup

    Get PDF
    Sacrofanite, a = 12.903(2) Å, c = 74.284(8) Å, space group View the MathML source, belongs to the cancrinite–sodalite supergroup of minerals, and displays a 28-layer stacking sequence along the c axis. Its stacking sequence is ABCABACACABACBACBACABABACABC…, where A, B and C stand for the positions of six-member rings of tetrahedra in each layer. It corresponds to the Zhdanov symbol |12(8)21|12(8)21|, and gives rise to a framework with topological symmetry P63/mmc. The ordering of Si and Al in the tetrahedral sites reduces the symmetry to View the MathML source. The members of this supergroup of minerals belong to the wider ABC-6 family, where also double rings of tetrahedra may occur. They share many structural features with zeolites, showing structural cages hosting extra-framework ions as well as H2O molecules. The crystal structure of sacrofanite has been modelled on the basis of High Resolution Transmission Electron Microscopy (HRTEM) images. The resulting model has been successfully refined by using both single-crystal synchrotron radiation and laboratory data. The refinements converged to R = 0.083 for 4228 unique reflections, and to R = 0.096 for 15,795 unique reflections, respectively. The resulting framework is formed by eight cancrinite and four sodalite cages superimposed along [0, 0, z], whereas one cancrinite, four sodalite, two losod, and one liottite cages occur along [1/3, 2/3, z] and [2/3, 1/3, z]. The structural formula of sacrofanite, as obtained from the refinement and by crystal chemical considerations, is (Na61K19Ca32)∑=112(Si84Al84O336)(SO4)26Cl2F6·2H2O

    Piezoelectric effect and electroactive phase nucleation in self-standing films of unpoled PVDF nanocomposite films

    Get PDF
    Novel polymer-based piezoelectric nanocomposites with enhanced electromechanical properties open new opportunities for the development of wearable energy harvesters and sensors. This paper investigates how the dissolution of different types of hexahydrate metal salts affects β-phase content and piezoelectric response (d33) at nano-and macroscales of polyvinylidene fluoride (PVDF) nanocomposite films. The strongest enhancement of the piezoresponse is observed in PVDF nanocomposites processed with Mg(NO3)2·6H2O. The increased piezoresponse is attributed to the synergistic effect of the dipole moment associated with the nucleation of the electroactive phase and with the electrostatic interaction between the CF2group of PVDF and the dissolved salt through hydrogen bonding. The combination of nanofillers like graphene nanoplatelets or zinc oxide nanorods with the hexahydrate salt dissolution in PVDF results in a dramatic reduction of d33, because the nanofiller assumes a competitive role with respect to H-bond formation between PVDF and the dissolved metal salt. The measured peak value of d33reaches the local value of 13.49 pm/V, with an average of 8.88 pm/V over an area of 1 cm2. The proposed selection of metal salt enables low-cost production of piezoelectric PVDF nanocomposite films, without electrical poling or mechanical stretching, offering new opportunities for the development of devices for energy harvesting and wearable sensors
    corecore