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Abstract
The thermal behaviour of an uvite from San Piero in Campo (Elba Island, Italy) was investigated at room pressure through 
in situ high-temperature powder X-ray diffraction (PXRD), until the breakdown conditions were reached. The variation of 
uvite structural parameters (unit-cell parameters and mean bond distances) was monitored together with site occupancies and 
we observed the thermally induced Fe oxidation process counterbalanced by (OH)− deprotonation, which starts at 450 °C 
and is completed at 650 °C. The uvite breakdown reaction occurs between 800 and 900 °C. The breakdown products were 
identified at room temperature by PXRD and the breakdown reaction can be described as follows: tourmaline → indial-
ite + yuanfuliite + plagioclase + “boron-mullite” phase + hematite.

Keywords  Uvite · HT-PXRD · Thermal expansion · Iron oxidation · Deprotonation · Intracrystalline cation exchange · 
Structural breakdown

Introduction

Tourmalines are a mineral supergroup of complex borosili-
cates occurring in different geological settings, from dia-
genetic stages to ultra-high-pressure (UHP) environments 
(e.g., Henry and Dutrow 1996; Dutrow and Henry 2011; 
Lussier et al. 2016). Such an extensive stability field is due 
both to the capacity of tourmaline to adjust its composition 
depending upon the formation environment and to its crystal 
structure (discussed below).

The general chemical formula of tourmaline is: 
XY3Z6T6O18(BO3)3V3W, where X = Na+, K+, Ca2+, □ 
(= vacancy); Y = Al3+, Fe3+, Cr3+, V3+, Mg2+, Fe2+, Mn2+, 
Li+; Z = Al3+, Fe3+, Cr3+, V3+, Mg2+, Fe2+; T = Si4+, Al3+, 
B3+; B = B3+; V = (OH)−, O2−; W = (OH)−, F−, O2−. The 
non-italicized letters X, Y, Z, T and B represent groups of 
cations at the [9]X, [6]Y, [6]Z, [4]T and [3]B crystallographic 
sites (italicized letters), and the letters V and W represent 
groups of anions accommodated at the [3]-coordinated O3 
and O1 crystallographic sites, respectively. Tourmaline-
supergroup minerals are primarily classified into three 

groups, vacant, alkali and calcic, based on the X-site occu-
pancy (Henry et al. 2011). A further level of classification 
into subgroups is based on charge arrangements at the Y and 
Z sites. Tourmalines are also distinguished by the dominant 
anion at the W position of the general formula into hydroxy-, 
fluor- and oxy-species.

Tourmaline structure is inextricably built over the triangular 
planar (BO3) group, which is bonded to the trigonal antiprism 
XO9 and to YO6 octahedron. Each one of the XO9 antiprisms is 
linked to a ring of six tetrahedra [T6O18]. All those structural 
elements of tourmaline constitute separate islands that extend 
along c crystallographic axis. Finally, the structural backbone 
of tourmaline is made by ZO6 polyhedra that tie the islands 
together thus giving tourmaline the mechanical properties that 
makes it a very resistant mineral in clastic sediments and UHP 
environments (e.g., Bosi 2018). Also for this reason, tourma-
line is able to give inferences about the chemical conditions 
of its formation (Dutrow and Henry 2011). Thus, tourmaline 
is stable in a variety of geological setting, including where 
crustal material is recycled through subduction zones down to 
the upper mantle (Henry and Dutrow 1996; Ota et al. 2008a,b; 
Shimizu and Ogasawara 2013). Tourmaline can also form in 
subduction environments in presence of B-bearing aqueous 
fluids, when the other phases in paragenesis with it reach 
their breakdown conditions and some elements are recycled 
in tourmaline’s structure which is stable at those depths, so 
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that it may form, or overgrow (if it was pre-existing in the 
recycled material) with a new composition, depending upon 
the elements available to be incorporated. At greater depths, 
tourmaline itself experiences breakdown, and aqueous fluids 
are released and may escape once again going metasomatize 
the surrounding rocks, reducing both their solidus temperature 
and the viscosity of possibly associated melt (Pichavant 1981; 
Dingwell et al. 1992).

If subducting serpentinites are strictly coupled with car-
bonaceous (meta)sediments, the release of Ca-rich metaso-
matic fluids along the slab is likely to occur as a consequence 
of dehydration reactions, going for example to form strongly 
Ca-enriched patches and layers of hybrid rocks (lawsonite-
bearing) in metagabbro matrix (Tartarotti et al. 2019). Those 
Ca-rich metasomatic fluids may also lead to the formation of 
Ca-bearing tourmaline that acts as Ca-carrier at greater depths 
until the breakdown conditions are reached. In some cases, 
tourmaline can experience an extreme chemical evolution that 
ends up with a change in its nomenclature, for example from 
alkali to calcic, following the possible substitution scheme 
for Ca incorporation into tourmaline reported in Henry and 
Dutrow (1990).

The breakdown conditions of tourmaline are composition-
dependent and a reference diagram of tourmaline stability 
field is reported in van Hinsberg et al. (2011), mainly regard-
ing alkali tourmalines (schorl and dravite) and vacant ones 
(magnesio-foitite).

The occurrence of Ca-rich tourmalines in nature was exper-
imentally demonstrated to be a function of pressure, tempera-
ture and metamorphic fluids composition (Berryman et al. 
2016), but calcic tourmalines remain so far the less investigated 
in terms of thermal behaviour, dehydration and breakdown 
products, also because uvite, ideally CaMg3(Al5Mg)(Si6O18)
(BO3)3(OH)3(OH), was only recently officially approved by 
the International Mineralogical Association’s Commission on 
Nomenclature and Classification as a new mineral species of 
tourmaline supergroup (Bosi et al. 2022).

The present work aims at investigating the thermal behav-
iour and stability of the calcic tourmaline uvite, at room 
pressure (RP). The holotype of uvite from San Piero in 
Campo (Elba Island, Italy), described by Bosi et al. (2022) 
with formula X(Ca0.61Na0.35□0.04)Σ1.00 Y(Mg1.51Fe2+

0.47 
Al0.70Fe3+

0.14Ti0.18)Σ3.00 Z(Al4.54Fe3+
0.18V3+

0.02Mg1.27)Σ6.01 
T(Si5.90Al0.10)Σ6.00 (BO3)3 V(OH)3 W[(OH)0.55F0.05O0.40]Σ1.00, 
was studied by in situ high-temperature powder X-ray dif-
fraction (HT-PXRD) up to the structural breakdown.

Experimental

A fragment of an uvite crystal was gently ground in an agate 
mortar under ethanol. The resulting powder was loaded in 
a 0.7 mm-diameter SiO2-glass capillary kept open at one 

side. To avoid unwanted movements of the powder along 
the capillary, some kaolin wool-glass was used as a stopper 
at the open side. Finally, the capillary was fixed to a hol-
low corundum tube using an HT cement. In situ HT-PXRD 
experiments were performed using a heating chamber for 
capillaries, developed by MRI and Bruker AXS, placed 
along the beam path of the diffractometer. Relevant features 
and details of the thermal calibration procedure of the cham-
ber may be found in Ballirano and Melis (2007).

Data were measured, using CuKα radiation, on a Bruker 
AXS D8 Advance, operating in θ/θ geometry in transmis-
sion mode, fitted with focussing multilayer graded (Göbel) 
mirrors placed along the incident beam and Soller slits on 
both the incident (2.3° opening angle) and diffracted (radial) 
beams. Intensities were collected by a position sensitive 
detector (PSD) VÅntec-1 set at an opening angle of 6° 2θ.

At the end of the heating run, the capillary was cooled 
back at room temperature (RT) within the chamber with a 
10 °C/min rate. The powder was removed from the capil-
lary, re-homogenized and loaded in a new borosilicate-glass 
capillary following the same procedure, aimed at reducing 
the possible effect of textured recrystallization at the walls of 
the capillary, adopted by Celata et al. (2021) and Ballirano 
et al. (2022). Data collection was performed keeping the 
sample outside the chamber using the same angular range, 
step-scan size, and counting time of the HT measurements 
(see Table 1).

Data were evaluated by the Rietveld method using Topas 
V.6 (Bruker AXS 2016) which implements the Funda-
mental Parameters Approach (FPA: Cheary and Coelho 
1992) to describe the peak shape. Absorption correction 
for a cylindrical sample was performed using the equa-
tion of Sabine et al. (1998) and the procedure described 
by Ballirano and Maras (2006) was applied for handling 
the correlation existing between displacement param-
eters and absorption. The isotropic displacement param-
eters were constrained as follows: BY = BZ = BB = BT; 

Table 1   Miscellaneous data of the data collection and Rietveld 
refinements

Definition of the statistical indicators as indicated in Young (1993)

2θ range (°) 7–135
2θ step-size (°) 0.021798
Counting time (s) 4
Tmax (°C) 900
T steps (°C) 25
Heating rate (°C/min) 0.5
RP (%) 0.960–1.255
Rwp (%) 1.232–1.676
RBragg (%) 0.649–0.851
DWd 1.190–1.526
χ2 1.046–1.346
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BO1 =  BO2 =  BO3 =  BO4 =  BO5 =  BO6 =  BO7 =  BO8; 
BH1 = BH3 = 1.2* BO1. Texture effects were corrected using 
spherical harmonics (8th-order, nine refinable parameters), 
selecting the number of appropriate terms by using the 
approach of Ballirano (2003). Starting structural data were 
taken from Bosi et al. (2022) and each refined structure at a 
given non-ambient T was used as input for the subsequent 
T. Experimental conditions and miscellaneous information 
regarding the refinements are listed in Table 1, a magnified 
3D-plot of the full data set is shown in Fig. 1, and a repre-
sentative example of Rietveld plots is shown in Fig. 2. CIFs 
of the uvite structure refined at the various T are given in 
online resource.

Results and discussion

Breakdown products of uvite

The first evidence of uvite structural breakdown was 
observed at 800 °C owing to the occurrence of weak dif-
fraction reflections that were subsequently assigned with 
the help of the diffraction pattern collected on the material 
cooled to RT. The breakdown was completed at the T of 
900 °C. The diffraction pattern of the sample cooled down at 
RT (Fig. 3) was refined by the Rietveld method keeping fixed 
all structural parameters to reference data except for unit-
cell parameters. Therefore, the resulting quantitative phase 
analysis (QPA) must be considered as semi-quantitative. 
Data indicate the occurrence of prevailing indialite, ideally 
Mg2Al3[AlSi5O18] (Balassone et al. 2004), plus yuanfuliite, 

ideally Mg(Fe3+,Al)O(BO3) (Appel et al. 1999), plagioclase, 
a “boron-mullite” phase (labelled as Al4B2O9 in the graph; 
Fischer et al. 2008) and hematite as breakdown products of 
uvite. According to various determinative methods (Kroll 
1983) and considering the relatively large standard uncer-
tainty of the refined cell parameters, plagioclase composition 
could be restrained to the 75–90 An mol% range. All these 
phases were also identified in the HT diffraction patterns 
collected at T ≥ 800 °C, indicating that they were not pro-
duced during the cooling process. Furthermore, no inten-
sity variation of the broad bump centred at ~ 22° 2θ, due to 
the capillary glass, was observed at the end of the thermal 
heating run testifying the absence of relevant amounts of 
amorphous material.

The observed assemblage of phases is significantly dif-
ferent with respect to that resulting from the thermal break-
down of both Fe-rich fluor-elbaite (Celata et al. 2021) and 
Mn-bearing fluor-elbaite (Ballirano et al. 2022). In particu-
lar, the mullite-like phase reported as the prevailing crystal-
line product of Fe-rich fluor-elbaite and Mn-bearing fluor-
elbaite breakdown is replaced by indialite. This is due to the 
occurrence of significant Mg and lower Al content of the 
pristine uvite sample (5.24 atoms per formula unit, apfu) 
as compared to the fluor-elbaite ones (5.96 and 7.81 apfu, 
respectively).

Moreover, the absence of abundant B-rich amorphous 
material is justified by the occurrence, among the breakdown 
products of uvite, of two different phases (yuanfuliite and 
boromullite) where B may be accommodated.

Owing to the limited amount of “boron mullite” in 
mixture, it was not possible to derive reliable unit-cell 

Fig. 1   Magnified 7–40° 2θ 3D-view of the full data set collected in the 30–900 °C thermal range
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Fig. 2   Representative example of the Rietveld plots of the diffraction pattern collected at 175 °C. Blue: experimental; red: calculated; grey: dif-
ference; vertical bars: position of calculated Bragg reflections of the uvite studied

Fig. 3   Magnified 7–60° 2θ view of the Rietveld plots of the prod-
ucts of breakdown of the uvite studied. Blue: experimental; red: cal-
culated; grey: difference; vertical bars: position of calculated Bragg 
reflections of (from above to below) plagioclase, indialite, hematite, 

yuanfuliite and “boron mullite”. The contribution of “boron mul-
lite” (labelled as Al4B2O9 in the legend) is indicated as a continuous 
magenta line



Physics and Chemistry of Minerals (2022) 49:40	

1 3

Page 5 of 10  40

parameters to characterize in detail its chemistry as it was 
done for the Al2O3–B2O3–SiO2 (ABS) phases arising from 
the breakdown of fluor-elbaite samples (Celata et al. 2021; 
Ballirano et al. 2022).

Thus, after uvite breakdown, Ca is hosted in plagioclase 
(75–90% An) and allegedly in both indialite and yuanfuliite 
(< 0.10 apfu). No melt was observed, so, at these conditions, 
no B–Ca-bearing aqueous fluids are produced.

Our experimental results can be intended as a preliminary 
study of the lower limit of uvite’s stability field, setting the 
stage for future HP–HT experiments aimed to mimic the 
conditions of a subducting slab to better understand the role 
and behaviour of Ca–tourmaline in dehydration processes 
and release of Ca-bearing metasomatic fluids.

Thermal expansion and HT structure modifications

Variation of unit-cell parameter values at each T for the uvite 
sample is reported in Table 2, and shown in a graphical way 
in Fig. 4. The dependence of the unit-cell parameters from 
T was modelled using the Berman equation (Berman 1988). 
This approach indicated the occurrence of a discontinuity 
at 450 °C, and for this reason, the fitting was limited to a 
maximum T of 425 °C. The corresponding functions are 
shown as continuous red lines in Fig. 4. Table 3 lists the 
relevant parameters of the fitted functions that are compared 
to those of Fe-rich fluor-elbaite (Celata et al. 2021) and Mn-
bearing fluor-elbaite (recalculated from the published data 
of Ballirano et al. 2022). Data indicate that the c-parameter 
is softer than the a-parameter against T. It is worth noting 
that uvite expands at a rate slightly greater than that of both 
Fe-rich fluor-elbaite and Mn-bearing fluor-elbaite.

The dependence of the normalized unit-cell parameters 
with T is reported in Fig. 5. The trend is very similar to that 
observed in both Fe-rich fluor-elbaite and Mn-bearing fluor-
elbaite (Celata et al. 2021; Ballirano et al. 2022).

The first deviation from the regularly increasing trend 
of the a-parameter occurs at 450 °C and it ends at 625 °C; 
above this T, the a-parameter increases again with approxi-
mately the same rate observed below 450 °C. The c-param-
eter shows a discontinuity at the same T (450 °C) consisting 
in a very small inflexion before regaining the same expan-
sion rate. The data measured at T = 900 °C, during the onset 
of the breakdown, apparently deviate from the trends, but 
they are affected by a high standard uncertainty value. It is 
worth noting that Mn-bearing fluor-elbaite shows a diverg-
ing behaviour for the a- and c-parameter at T exceeding 
750 °C that may be related to the onset of the intracrystal-
line order–disorder reaction YLi + ZAl → ZLi + YAl (Ballirano 
et al. 2022).

Based on reference data (Celata et al. 2021; Ballirano 
et  al. 2022), the discontinuity of the unit-cell param-
eters’ dependence from T observed in the 450–625 °C 

thermal range is caused by the onset of the transition 
elements (TEs) oxidation process which is coupled to 
deprotonation at the H1 and/or H3 sites. In the case of 
uvite, the equation describing the process takes the form 
of (Fe2+) + (OH)− → (Fe3+) + (O2−) + 1/2H2(g), (Bosi 
et  al. 2019). In fact, such a discontinuity is similar to 
that observed in Fe-rich fluor-elbaite and Mn-bearing 
fluor-elbaite (Celata et al. 2021; Ballirano et al. 2022); 
the magnitude of the contraction of the cell parameters is 
consistent with the corresponding amounts of TEs (Fe-
rich fluor-elbaite: 1.12 apfu Fe2+  + Mn2+; uvite, 0.47 apfu 
Fe2+; Mn-bearing fluor-elbaite, 0.12 apfu Mn2+).

Table 2   Refined cell parameters of the studied uvite at the various 
temperatures

T (°C) a (Å) c (Å) Volume (Å3)

30 15.97430 (7) 7.22915 (4) 1597.574 (16)
50 15.97556 (7) 7.23068 (5) 1598.166 (18)
75 15.97774 (8) 7.23283 (5) 1599.076 (19)
100 15.97902 (8) 7.23433 (5) 1599.666 (19)
125 15.98156 (8) 7.23662 (5) 1600.682 (18)
150 15.98344 (8) 7.23857 (5) 1601.490 (18)
175 15.98529 (8) 7.24063 (5) 1602.315 (19)
200 15.98734 (8) 7.24250 (5) 1603.140 (19)
225 15.98915 (8) 7.24465 (5) 1603.980 (19)
250 15.99199 (8) 7.24716 (5) 1605.11 (2)
275 15.99436 (8) 7.24963 (5) 1606.13 (2)
300 15.99709 (8) 7.25208 (5) 1607.22 (2)
325 15.99985 (9) 7.25473 (5) 1608.36 (2)
350 16.00159 (9) 7.25682 (6) 1609.17 (2)
375 16.00454 (9) 7.25930 (5) 1610.32 (2)
400 16.00636 (9) 7.26132 (6) 1611.13 (2)
425 16.00847 (9) 7.26340 (6) 1612.02 (2)
450 16.00939 (10) 7.26504 (6) 1612.57 (2)
475 16.01013 (10) 7.26654 (6) 1613.05 (2)
500 16.01033 (10) 7.26831 (6) 1613.48 (2)
525 16.01014 (10) 7.27038 (6) 1613.91 (2)
550 16.00973 (10) 7.27229 (6) 1614.25 (2)
575 16.01016 (10) 7.27507 (6) 1614.95 (2)
600 16.01014 (10) 7.27735 (6) 1615.45 (2)
625 16.01128 (10) 7.27979 (6) 1616.22 (2)
650 16.01295 (10) 7.28216 (6) 1617.09 (2)
675 16.01465 (10) 7.28404 (6) 1617.85 (2)
700 16.01706 (10) 7.28628 (6) 1618.83 (2)
725 16.01871 (10) 7.28813 (6) 1619.58 (2)
750 16.02091 (10) 7.29026 (6) 1620.50 (2)
775 16.02372 (11) 7.29274 (6) 1621.62 (3)
800 16.02665 (11) 7.29551 (7) 1622.83 (3)
825 16.0290 (4) 7.2980 (2) 1623.86 (10)
850 16.031 (2) 7.2977 (12) 1624.2 (5)
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Fig. 4   Variation of unit-cell 
parameters with T for the stud-
ied uvite. The continuous red 
lines represent the fitted Ber-
man functions for a, c and vol. 
Parameters of the corresponding 
functions are listed in Table 3

Table 3   Relevant parameters 
of the fitting procedure by 
the Berman equation of the 
unit-cell parameters vs T data, 
up to oxidation, of different 
tourmaline samples

Data for Fe-rich fluor-elbaite from Celata et al. (2021). Data for Mn-bearing fluor-elbaite recalculated from 
Ballirano et al. (2022). Please notice that in Celata et al. (2021), the values of a1 were erroneously listed as 
× 10−9 K−2 instead of 10−8 K−2. Temperature of reference = 30 °C (303 K). Uvite Tmax 698 K, step 25 °C; 
Fe-rich fluor-elbaite Tmax 698 K, step 50 °C; Mn-bearing fluor-elbaite Tmax 723 K, step 25 °C

V0, a0, c0 (Å3, Å, Å) a0 (× 10−5 K−1) a1 (× 10−8 K−2)

V (Å3)
 Uvite 1597.54 (8) 1.93 (6) 2.1 (3)
 Fe-rich fluor-elbaite 1564.38 (6) 1.59 (5) 2.6 (3)
 Mn-bearing fluor-elbaite 1530.15 (7) 1.56 (5) 2.6 (3)

a (Å)
 Uvite 15.97420 (23) 0.448 (18) 0.55 (9)
 Fe-rich fluor-elbaite 15.91875 (19) 0.371 (17) 0.66 (10)
 Mn-bearing fluor-elbaite 15.7927 (3) 0.36 (2) 0.69 (10)

c (Å)
 Uvite 7.22912 (17) 1.04 (3) 0.97 (15)
 Fe-rich fluor-elbaite 7.12842 (8) 0.849 (16) 1.32 (9)
 Mn-bearing fluor-elbaite 7.08421 (9) 0.841 (16) 1.23 (8)
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As far as the structural modifications are referred to, the 
< X–O > mean bond distance is characterized by a regular 
increase with T which is nicely fitted by a linear dependence 
(Fig. 6).

The dependences of < Y–O > and < Z–O > bond dis-
tances from T display contrasting behaviours (Figs. 7, 8). 
The < Y–O > bond distance increases in a fairly regular 
way from 2.045 to 2.065 Å. Minor dispersion of the data 

from the linear trend may be possibly related to the effect 
of the minor TEs’ oxidation. Differently, this behaviour 
is evident in the case of Fe-rich fluor-elbaite, whose 
TEs’ content is significantly higher than that of uvite. In 
fact, a contraction of the < Y–O > bond distance, in the 
thermal range where the TEs’ oxidation occurs (Celata 
et al. 2021), is observed and ascribed to the smaller ionic 
radius of Fe3+ than that of Fe2+. Differently, the < Z–O > 

Fig. 5   Dependence of the 
normalized unit-cell parameters 
from T for uvite. For compari-
son purpose, data from Fe-rich 
fluor-elbaite (Celata et al. 2021) 
and Mn-bearing fluor-elbaite 
(Ballirano et al. 2022) are also 
reported

Fig. 6   Variation of < X–O > 
bond distance with T for the 
studied uvite
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bond distance shows a very minor decrease, from 1.935 
to 1.929 Å, as a function of T. It is unclear whether the 
decrease is significant or not as it is of a magnitude com-
parable to the standard uncertainty of individual Z–O bond 
distances. Such a variation could be possibly attributed 
to minor intracrystalline order–disorder reaction such 
as YFe + ZAl → ZFe + YAl described by Ballirano et  al. 
(2022) for Mn-bearing fluor-elbaite. However, analysis of 

the mean atomic number (man; Hawthorne et al. 1995) at 
both Y and Z sites (Fig. 9) shows that the small, constant 
reduction of man at Z, is not counterbalanced by a propor-
tional increase at Y. This reduction may hence be related 
to the simplification adopted to constrain the displacement 
parameters of atoms at the Y, Z, B and T sites to be equal 
throughout the various refinements.

Fig. 7   Dependence of < Y–O > 
bond distances from T for the 
studied uvite

Fig. 8   Dependence of < Z–O > 
bond distances from T for the 
studied uvite
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Conclusions

The thermal behaviour of uvite was investigated for the 
first time up to structural breakdown through in  situ 
HT-PXRD.

Well before the breakdown, heating the uvite at 
450  °C in air was enough to set the Fe oxidation 
out, counterbalanced by the deprotonation reaction: 
(Fe2+) + (OH)− → (Fe3+) + (O2−) + 1/2H2(g).

Tourmaline breakdown products have been identified 
as indialite (prevalent) yuanfuliite, plagioclase, a “boron-
mullite” phase, and hematite. No melt was produced 
after uvite breakdown and Ca is stored in plagioclase 
(75–90% An).
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