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Abstract: A multi-methodological approach, based upon field investigation, morphological
characterization, chemical analysis and structure refinement was applied to different samples
of fibrous offretite, a new potentially hazardous zeolite recently discovered in northern Italy.
Their morphology ranges from stocky-prismatic to asbestiform. All the investigated fibers may
be considered as “inhalable”, and they are well within the range of the “more carcinogenic fibers”
regarding diameter. As regards the length, the main mode observed in the asbestiform samples is
20–25 µm, and ~93% of the measured fibers are >5 µm and may be significantly associated with
carcinogenesis also in terms of lengths. The chemical-structural features of the investigated fibers are
comparable: the extra-framework cations K+, Mg2+ and Ca2+ are present in all samples in similar
proportions, and refined cell parameters are similar among the samples. Offretite occurs in 60% of the
investigated sites, with an estimated amount up to 75 vol % of the associated minerals. The presence
of this mineral could be of concern for risk to human health, especially if one considers the vast
number of quarries and mining-related activities that are operating in the zeolite host rocks.
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1. Introduction

In recent years, a subject of great interest has been that of inhalable mineral fibers and their
potential health effects [1,2]. One of the most important factors for defining the hazardousness of
mineral fibers is their size or their tendency to split into smaller fibrils that are easily inhalable [3–7].
The biopersistence of fibers, defined as their ability to persist in the human body to chemical,
physical, and other physiological clearance mechanisms, is another important factor for inducing
toxicity and carcinogenicity [8–10]. Accordingly, it has been shown that an inhalable fiber might
be carcinogenic if it is sufficiently durable to remain chemically and physically unaltered within
the lung tissue [11]. In addition to biopersistence, the presence and structural coordination of Fe
in the mineral fibers were proposed to play a key role in the carcinogenic mechanisms [12–14].
Other properties of fibers, including trace elements content, specific surface area, interacting capability,
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zeta potential, and microtopography might also act as important co-factors in fiber-induced toxicity
and carcinogenicity [15–18].

There are six fibrous minerals with asbestiform habit currently regulated by the normative
as asbestos [19,20]: chrysotile, amosite, crocidolite, tremolite, actinolite, anthophyllite. Recently,
epidemiological studies revealed several cases of environmental contamination of other, non-regulated
fibrous minerals. They are (1) amphiboles (winchite, richterite, fluoro-edenite [21,22]); (2) mineral
species with a chemical composition similar to asbestos (fibrous antigorite, balangeroite [23,24]); and (3)
further fibrous minerals (fibrous zeolites, talc, clay minerals as sepiolite and palygorskite [25–29]).
Among fibrous zeolites, erionite captured the interest of both the public opinion and the scientific
community since it has been responsible for an epidemic of mesothelioma in some villages of
Cappadocia region (Turkey), where houses were built with erionite-bearing rocks. In these villages,
up to 50% of the yearly deaths were due to mesothelioma, the highest rates of cancer-related
to environmental exposure to fibrous minerals ever reported [30–32]. Toxicological studies have
shown that fibrous erionite is significantly more carcinogenic than chrysotile and crocidolite [33–37].
Accordingly, erionite has been classified as a Group 1, known Human-Carcinogen, by the International
Agency for Research on Cancer [38,39]. Recently, many concerns regarding the potential risks for
environmental and occupational exposures to erionite have developed in the western USA [40–42],
Mexico [43,44], Iran [45] and Italy [46,47]. It must be pointed out that a recent investigation on the
surface properties of fibrous zeolites [18] showed a significant surface reactivity of offretite, a zeolite
closely related both structurally and chemically to erionite. Moreover, recent works [48,49] highlighted
that fibrous offretite could cause some toxic effects on human health. On this basis, the acquisition of
further knowledge on fibrous offretite is of paramount importance to predict its potential toxicity and
to prevent other occurrences of unexpected pathologies.

Offretite crystallizes in the hexagonal system, space group P6m2, cell parameters a = 13.27–13.32 Å,
c = 7.56–7.61 Å, average chemical formula KCaMg(Al5Si13O36)·16H2O. It forms simple hexagonal
prisms and needles associated in both parallel and radiating aggregates [50–52], but it is also known to
crystallize with fibrous habit [53]. Offretite typically occurs as fine microscopic crystals of hydrothermal
origin clustered in vugs and veins of basic volcanic rocks, but it has also been found in cavities of
arenaceous metasiltites or cornubianites [53]. Frequently, it is associated with many other zeolites
such as mazzite, chabazite, levyne, erionite, phillipsite, faujasite, and epitaxial overgrowth on levyne
and chabazite [52,53]. Moreover, given the strong correlation between their respective structures and
chemistry, the structural epitaxy of offretite and erionite is common [54]. Thus, the distinction between
these two species is often very difficult even by X-ray powder diffraction data [51].

The first occurrence of offretite in Italy was reported in a cornubianite rock from Passo Forcel
Rosso, Adamello, as milky-white fibers in epitaxy with chabazite [53]. From another locality of this
area and in the same host-rock, offretite with a barrel-like habit has been found [55]. Other occurrences
of offretite in Italy have been reported in the vugs of basaltic rocks outcropping in several localities in
the Vicenza and Verona provinces (Fittà, Cerealto, Alvese, Montorso Vicentino and Passo Roccolo).
The corresponding offretite crystals show habits ranging from the barrel- to needle-like prisms,
frequently associated as parallel aggregates or grouped in sub-spherical forms [51,56–59]. However,
despite these studies, many mineralogical and toxicological aspects of Italian offretite remain unknown.

In this study, we present a detailed morphological, chemical and structural characterization
of different samples of offretite recently discovered in northern Italy, some of which show an
asbestiform habit. Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS)
and X-ray Powder Diffraction (XRPD) data were combined and integrated, to characterize from the
morphological, crystal chemical and structural point of view this mineral, with particular attention to
the fibers of inhalable size, which could be generated from these samples.



Minerals 2018, 8, 69 3 of 16

2. Materials and Methods

Three different samples of offretite (named FF102, AD13, MB2287) were investigated in this study
(Table 1). They were selected over a sample set of over 100 new specimens from the investigated
outcrops (Table 1), according to the three main morphologic types recognized in northern Italy:
stocky-prismatic with a solid appearance (FF102), prismatic to acicular with rigid mechanical behavior
(AD13), and asbestiform with rigid to flexible behavior (MB2287).

Table 1. Synoptic table showing locations, geographic coordinates, mineral assemblages and
offretite amounts of the investigated outcrops from northern Italy. CHA—chabasite; OFF—offretite;
ERI—erionite; CM—clay minerals; PHI/HAR—phillipsite/harmotome; NAT—natrolite; ANA—analcime;
YUG—yugawaralite; GYR—gyrolite; PRE—prehnite; GIS—gismondine.

Locality Latitude Longitude Altitude
(m a.s.l.) Mineral Association Offretite

(vol %)

Marcantoni 45.360653 11.174968 555 CHA + OFF + ERI + CM 60
Nogare (FF102) 45.362673 11.180461 401 OFF + ERI + CM 75

Battistini 45.361506 11.175586 474 PHI/HAR + CHA + ERI + OFF + CM 35
Mattiazzi 45.361784 11.180102 468 OFF + ERI+ CM 70

Foscarino Mt. 45.439427 11.258779 296 PHI/HAR + ERI + OFF + CM 30
Colombara 45.426723 11.277245 140 PHI/HAR + CHA + OFF + ERI + CM 40

Fittà (AD13) 45.453548 11.253994 281 PHI/HAR + OFF +ERI + CM 70
Calvarina Mt. 45.490955 11.269361 280 NAT + ANA + ERI + OFF + CM 15
Chiereghini V. 45.549751 11.219361 285 PHI/HAR + NAT + OFF + CM -
S.Giovanni Il. 45.521057 11.236276 194 ANA + ERI + OFF + PHI/HAR + CM 30

Beltrami 45.525522 11.229305 253 PHI/HAR + CHA + OFF + CM 20
Bagattei 45.551624 11.218733 329 PHI/HAR + ERI + OFF + YUG + CM 35
Soave 45.419776 11.247955 50 OFF + ERI + GYR + PRE + CM 75
Roncà 45.480646 11.288877 80 ANA + OFF + PHI/HAR + CM 55
Prun 45.577982 10.951481 541 CHA + OFF + ERI + CM 60

S. Cristina 45.581039 10.940663 683 PHI/HAR + CHA + ERI + OFF + CM 10

Saviore (MB2287) 46.025012 10.255729 1845 CHA + OFF + CM 65
La Trabersera 46.024379 10.271761 1825 CHA + OFF + PHI/HAR + CM 45

Lago d’Arno E 46.023939 10.273229 1827 CHA + OFF + GIS + CM 40

The samples FF102 and AD13 originated from Nogare (VI) and Fittà (VR), respectively, in the
Lessini Mountains (northern Italy), where a thick sequence of lava flows of the Veneto Volcanic Province
extensively crops out [60,61]. These lavas range from poorly to highly vesiculated and scoriaceous
basalts and basanites. Their vesicles are often filled with secondary minerals, which are dominated by
zeolites of hydrothermal origin (mainly analcime, chabazite, phillipsite-harmotome, gmelinite, erionite,
and offretite). Based on the different secondary mineral assemblages, multi-stage alteration processes
have been described in the Lessini basalts [56].

The sample MB2287 originated from Saviore dell’Adamello (BS) and had been found in cavities of
an arenaceous metasiltite, metasomatised by the Adamello intrusion. This rock, which is a fine-grained,
black cornubianite belonging to the Servino Formation, is characterized by the presence of large druses
filled by secondary minerals such as zeolites (chabazite, gismondine, offretite, mesolite, phillipsite)
and other phases (calcite, pyrite, actinolite, muscovite). The association offretite-chabazite is already
known in this area [53,55]; however, the morphology of offretite crystals in our sample is notably
different concerning that described in the literature, and this is the first time that asbestiform offretite
is found in northern Italy.

Morphological observations were performed at the University of Urbino Carlo Bo using an
Environmental Scanning Electron Microscope (ESEM) FEI Quanta 200 FEG (FEI, Hillsboro, OR, USA),
equipped with an energy-dispersive X-ray spectrometer (EDS) for microchemical analyses. Operating
conditions were 30 kV accelerating voltage, 10 mm working distance, 0◦ tilt angle, and variable beam
diameter. The ESEM was utilized in low vacuum mode, with a specimen chamber pressure set from
0.80 to 0.90 mbar. The images were obtained using a back-scattered electron detector. For the sample
MB2287, given the very small size fibers and asbestiform habit, morphometric data were collected by
accurate size measurements (length and diameter) of the offretite fibers visible in several ESEM images.
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SEM-EDS analyses were performed on free surfaces of selected crystals and renormalized using a
theoretical water content of 19.34 wt %, corresponding to the grand mean values of offretite samples
previously analyzed; the final crystal-chemical formula was calculated by 18 (Si + Al) atoms per
formula unit (apfu). As previously suggested [62,63], to minimize the alkali metal migration, chemical
data were acquired using a low counting time and a raster scan mode to reduce the temperature
increase. The reliability of the chemical analysis used to classify the offretite samples was evaluated
by using the charge balance error formula (E% within ±10%; [51,64]), the Mg-content [65] and the
K-content tests, similarly to erionite [66].

XRPD data were collected for all the studied samples. Crystals were selected under a binocular
microscope. They were reduced in powder using an agate mortar and loaded into 0.5 mm diameter
SiO2-glass capillaries. XRPD data were collected in transmission mode using a D8 Advance
diffractometer (Bruker AXS, Karlsruhe, Germany) operating in θ/θ geometry. The instrument
is fitted with focusing Göbel mirrors on the incident beam, Soller slits on both incident and
(radial) diffracted beams, and a PSD VÅNTEC-1 detector. The Rietveld method was used to
determine the cell parameters of offretite. However, in the case of sample AD13 that was found
to consist of pure offretite, a full structure refinement was carried out using TOPAS v.4.2 [67]
and modeling the peak shape by FPA (Fundamental Parameters Approach). Starting structural
model of offretite was taken from [68]. We adopted the same Rietveld refinement procedure used
by the present research group in several structure refinements of erionite fibers [12,69]. Owing
to the occurrence of correlations between site occupancy factors and displacement parameters,
the latter were constrained as follows: BSi1=BSi2; BO1=BO2=BO3=BO4=BO5=BO6; BK1=BMg1; BCa1=BCa2;
BOW7=BOW8=BOW9=BOW10=BOW11=BOW12. Absorption correction was performed following the
formalism of [70], and the occurrence of preferred orientation was modeled by spherical harmonics
selecting the number of terms to be used according to the procedure devised by [71]. Moreover,
the refinement was performed using the ellipsoid-model of [72] describing the diffraction-vector
dependent broadening of diffraction maxima. Full structural data of the samples were submitted as
CIF file in the Supplementary Material.

3. Results

3.1. Morphology

The FF102 sample contains stocky-prismatic crystals of offretite showing well-shaped hexagonal or
pseudo-hexagonal habits with diameters of ~50 µm and lengths up to 200 µm (Figure 1a,b). They occur
as irregular aggregates of several individual crystals, but isolated single prisms are also observed.
In some cases, the crystals termination shows smaller size and irregular morphology due to the
presence of a network of fractures. The crystals of this sample have a compact aspect and a rigid
behavior and do not originate any fibrous element.

In the AD13 sample, offretite occurs as very elongated, hexagonal (or pseudo-hexagonal) prismatic
crystals of solid appearance, with size ~50 µm concerning diameter, and up to 500 µm regarding length
(Figure 1c,d). Furthermore, in the same sample, acicular to fibrous offretite crystals with diameters
<1 µm and lengths up to 500 µm are also present, sometimes grouped in radiating bundles of larger
size. These fibrous crystals show a rigid behavior, even if some fibers are curved and seem to display
flexibility. In any case, both single prismatic and acicular crystals present a well-shaped morphology,
and no fractures are recognizable.

In the MB2287 sample, offretite is found under the form of very thin fibers densely associated in
parallel aggregates, which grow as a coating on the main surfaces of platy, rhombohedral chabazite
crystals, creating a sandwich-like morphology (Figure 1e). In this sample, offretite is characterized by
an extremely fibrous habit, consisting of fibers and fibrils with a diameter ranging from <<1 µm to
about 4 µm, and variable lengths (generally about 20 µm; Figure 1f). Accordingly, it might be described
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as having an asbestiform habit. The coatings are always characterized by a great tendency to separate
in fibers and fibrils of the thinner section, with rigid to flexible behavior.
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Figure 1. Representative SEM images of the studied samples. (a) Stocky-prismatic crystals of
offretite with hexagonal section (FF102); (b) Radial aggregates of offretite prisms, characterized by
evident fractures (FF102); (c) Very elongated, acicular to fibrous offretite crystals grouped in radial
aggregates with rigid to flexible behavior (AD13); (d) Particular of the previous sample showing the
thin diameter of hexagonal offretite fibrils (AD13); (e) The offretite–chabazite–offretite sequence is
forming a sandwich-like morphology (MB2287); (f) Details of the parallel growth of the asbestiform
offretite consisting of rigid to flexible thin fibers and fibrils (MB2287).
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Considering the asbestiform nature of the MB2287 sample, morphometric analyses were
performed on about 100 ESEM images to quantify the size (length and diameter) of all the visible fibers
separated and deposited on the sampling plate, as well as those partially separated from the main
crystals. The results are summarized in Figure 2. As regards the length, about 99% of the total of the
measured fibers lies in the range from ~2 to ~30 µm (average 17.7 µm), while the remaining ~1% is
longer than 30 µm. With over 65% of the measured fibers, the main mode corresponds to a fiber length
between ~15 and ~25 µm. Regarding diameter, the histogram shows the presence of a large population
of fibers (~95%) characterized by a small diameter (<1.5 µm; average of 0.6 µm), and the remainder
(~5%) shows a small diameter (up to 2 µm). In particular, more than 30% of the measured fibers have a
very small diameter, up to 0.3 µm, with a mean value of 0.25 µm.

Minerals 2018, 8, x FOR PEER REVIEW  6 of 16 

 

of the measured fibers lies in the range from ~2 to ~30 μm (average 17.7 μm), while the remaining 
~1% is longer than 30 μm. With over 65% of the measured fibers, the main mode corresponds to a 
fiber length between ~15 and ~25 μm. Regarding diameter, the histogram shows the presence of a 
large population of fibers (~95%) characterized by a small diameter (<1.5 μm; average of 0.6 μm), and 
the remainder (~5%) shows a small diameter (up to 2 μm). In particular, more than 30% of the 
measured fibers have a very small diameter, up to 0.3 μm, with a mean value of 0.25 μm. 

 
Figure 2. Size distribution of measured fibers (length and diameter) of the asbestiform MB2287 sample. 

3.2. Mineralogical Composition and Structural Data 

Owing to the difficulty of separate pure offretite crystals, XRPD data indicate that sample FF102 
contains impurities of chabazite and calcite, whereas MB2287 has large amounts of chabazite and 
calcite and minor quartz plus additional clay minerals (Figure 3). 

 
Figure 3. Diffraction patterns of the three offretite samples. Vertical bars refer to Bragg reflections of 
the various identified mineral. 

Refined cell parameters (Table 2) are similar among the samples and are consistent with those 
reported by [51]. Addition of the present data to the unit-cell volume vs. R (R = Si/(Si + Al)) plot of 
[51] does not improve the poor correlation reported by those authors (Figure 4). 
  

Figure 2. Size distribution of measured fibers (length and diameter) of the asbestiform MB2287 sample.

3.2. Mineralogical Composition and Structural Data

Owing to the difficulty of separate pure offretite crystals, XRPD data indicate that sample FF102
contains impurities of chabazite and calcite, whereas MB2287 has large amounts of chabazite and
calcite and minor quartz plus additional clay minerals (Figure 3).
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Refined cell parameters (Table 2) are similar among the samples and are consistent with those
reported by [51]. Addition of the present data to the unit-cell volume vs. R (R = Si/(Si + Al)) plot
of [51] does not improve the poor correlation reported by those authors (Figure 4).

Table 2. Unit-cell parameters of studied offretite samples obtained by Rietveld refinements.

Sample a (Å) c (Å) Volume (Å3)

FF102 13.3179 (5) 7.5839 (4) 1164.93 (13)
AD13 13.3086 (3) 7.58724 (18) 1163.80 (6)

MB2287 13.3216 (7) 7.5868 (6) 1166.02 (15)
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Figure 4. Correlation between unit-cell volume and R = Si/(Si + Al) of offretite samples. For comparison
purpose, literature data from [51] are also reported.

Rietveld refinement of samples AD13 indicates a disordered Si, Al distribution because of <Si1–O>
and <Si2–O> bond distances of 1.656 and 1.651 Å, respectively. According to Jones’ determinative
curves [73], the Si, Al distribution at the tetrahedral sites is Si1 = Al4.03Si7.97 and Si2 = Al1.82Si4.18

corresponding to an R ratio of 0.675. This value is slightly outside the reported range 0.69–0.74 of
offretite [51] and smaller than 0.724 obtained from chemical data (see below). The structure agrees with
that reported by [68]. Differences are related to the minor displacement of the extraframework (EF)
cations and H2O located within the gmelinite cages. As far as EF cations are referred to, the refined
site scattering (s.s.) of 62.8(11) e− is moderately higher than that obtained from SEM-EDS of 55.5 e−.
Similarly, the refined s.s. of the OW sites is consistent with the occurrence of 17.3(2) H2O per formula
unit (pfu). This value is slightly higher than the grand mean of offretite samples of ca. 16.3 H2O pfu
reported by [51]. It is worth noting that detailed scrutiny of the difference plot of the Rietveld
refinement indicates, despite the adopted anisotropic peak shape approach, some difficulty to properly
fit the 011, 021 and 211 reflections that could be possibly related to the occurrence of strain deriving
from minor fibers curling (Figure 5). Therefore, we may speculate that the small structural deviations
mentioned above may be due to this reason.
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line: calculated; continuous grey line: difference plot; vertical green bars: position of the calculated
Bragg reflections of offretite; (b) Magnified view of the Rietveld plots of sample AD13. Reflections 011,
021 and 211 show an imperfect fit of the tails that may be related to the occurrence of strain deriving
from fibers curling.

3.3. Chemical Data

The point analyses acquired on the investigated samples are highly consistent, showing a variation
of major elements within 2%–3%, indicating a high degree of chemical homogeneity of each sample.
The average chemical composition and relative standard deviations (σ) are reported in Table 3, whereas
all the collected data are shown in Figure 6.
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Table 3. The chemical composition of the investigated offretite samples, showing the average values (N is
the number of point analysis) and standard deviation (σ). ΣT, is the sum of cations in tetrahedral sites;
E%, measure of charge balance: E% = 100 × [Al − Alkth]/Alkth where Alkth = Na + K + 2 × (Ca + Mg);
R = Si/(Si + Al) ratio. Crystal chemical formula calculated on the basis of 18 (Si + Al) apfu.
* Hypothesized H2O content of 19.34 wt %.

Sample
FF102 AD13 MB2287

Average
N = 7 σ

Average
N = 8 σ

Average
N = 7 σ

SiO2 53.27 1.42 53.06 0.30 52.29 0.42
Al2O3 17.18 0.91 17.07 0.33 18.59 0.38
MgO 2.04 0.11 2.65 0.25 2.98 0.20
CaO 4.28 0.57 4.17 0.36 3.68 0.22

Na2O - - - - - -
K2O 3.89 0.21 3.70 0.41 3.12 0.20
H2O 19.34 * - 19.34 * - 19.34 * -
Total 80.66 - 80.66 - 80.66 -

Si 13.04 0.29 13.05 0.09 12.68 0.10
Al 4.96 0.29 4.95 0.09 5.32 0.10
ΣT 18.00 - 18.00 - 18.00 -
Mg 0.75 0.04 0.97 0.08 1.08 0.07
Ca 1.13 0.15 1.10 0.13 0.96 0.06
Na - - - - - -
K 1.22 0.07 1.16 0.13 0.97 0.06

ΣEFs.s. 54.53 - 55.49 - 55.59 -
O 36.00 - 36.18 - 35.86 -

H2O 15.79 0.09 15.70 0.04 15.78 0.02
R 0.72 0.02 0.72 0.01 0.70 0.01

E% −0.22 3.12 -6.05 3.75 5.38 3.52
Mg/(Ca + Na) 0.68 - 0.89 - 1.13 -
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extra-framework cations and the fields of erionite and offretite.

The average chemical composition of stocky-prismatic offretite of sample FF102 is
(K1.22Mg0.75Ca1.13)·(Al4.96Si13.04O36.00)·15.79H2O. The R ratio is in the range 0.71–0.74 (average 0.72),
which is consistent with the interval 0.69–0.74 identified by [51] for offretite. The K+ and Ca2+
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extra-framework (EF) cations are present in a comparable amount, being in the range 1.12–1.30 apfu
and 1.73–2.56 apfu, respectively. The Mg2+ content ranges from 0.70 to 0.79 apfu and the Mg/(Ca + Na)
ratio, which is considered the most significant chemical parameter for the distinction between erionite
and offretite [51], is in the range 0.54–0.88 (average 0.68).

The prismatic to acicular offretite AD13 has an average chemical formula
(K1.16Mg0.97Ca1.10)·(Al4.95Si13.05O36.18)·15.70H2O. The R ratio lies in the range 0.72–0.73, in agreement
with literature data. The K+ content (0.91–1.37 apfu) is similar to that of Ca2+ (0.91–1.21 apfu), but with
an average value slightly higher for K+. Moreover, the Mg2+ content is also high, ranging from 0.88 to
1.11 apfu, while the Mg/(Ca + Na) ratio range from 0.73 to 1.22 (average 0.89).

The asbestiform offretite MB2287 has an average chemical formula
(K0.97Mg1.08Ca0.96)(Al5.32Si12.68O35.86)·15.78H2O. The R ratio varies from 0.70 to 0.71, an interval well
within the range defined for offretite [51]. In this sample, all EF cations K+, Ca2+ and Mg2+ are present
in comparable amounts. The K+ content ranges from 0.91 to 1.06 apfu, while Ca2+ ranges from 0.89 to
1.05 apfu. The Mg2+ content is slightly higher than that of the previous samples, ranging from 0.96
to 1.20 apfu, and the Mg/(Ca + Na) ratio is in the range 0.91–1.27 (average 1.13). It is interesting to
notice that the analyzed samples show an inverse correlation between both K and Mg and Ca and Mg
content. All chemical data plot within the offretite field in the ternary compositional plot (Figure 6).

4. Discussion

The main mechanisms by which an inhaled fibrous mineral particle induces pathological changes
to comprise (a) physical features (diameter, length and aspect ratio); (b) chemical-mineralogical features
(fibre type, chemical composition and surface reactivity); (c) the ability to generate reactive oxygen
species (ROS); and (d) the biopersistence. These factors are also deeply interconnected: the fiber
dimensions influence its surface reactivity, fiber structure and composition control its biopersistence,
and biopersistence is associated with the fiber habit.

Concerning the physical features, the diameter seems to be the main factor controlling the ability
of fibers to reach the lower respiratory tract, while macrophage phagocytosis is more dependent on
fiber length [7,74]. According to [4], an elongated particle is defined as “inhalable” for humans when
its diameter is <3.5 µm, while [19] considers as inhalable the fibers with a diameter-length ratio ≥1:3,
a length >5 µm, and a diameter <3 µm. Fibers ≤0.25 µm in diameter and >8 µm in length seem to be
the most carcinogenic [3], but the majority of fibers detected in the lung and mesothelial tissues are
generally <1 µm in diameter and shorter than five µm in length [5,75,76]. Consequently, small-size
fibers should not be excluded from those contributing to the induction of human MM, especially in
high exposure environments. This is further supported by the fact that ultrafine fibers are particularly
suitable for penetration from the proximal area to the peripheral part of the lung and migration from
the lung to the pleura and the other sites within the human [6,77,78]. Therefore, it is difficult to exclude
fibers of a particular dimension from those producing disease within the lung or extrapulmonary sites.

In the investigated samples, the habit of offretite varies from stocky-prismatic crystals with a
solid appearance of FF102, through prismatic or acicular with the rigid mechanical behavior of AD13,
to asbestiform crystals with rigid to the flexible behavior of MB2287. Offretite with prismatic and
acicular crystal habits occurs more commonly, representing ~84% of the total studied samples, while
offretite with asbestiform habit is relatively rare and has been found in ~16% of the total samples.
However, it is relevant to highlight that asbestiform offretite had never been reported in northern Italy
and this work represents its first finding and characterization. The stocky-prismatic and prismatic
crystals have diameters of ~50 µm and lengths up to 500 µm, while the acicular variety is characterized
by the same lengths but very small diameters (<1 µm). The asbestiform crystals consist of fibers and
fibrils with a diameter ranging from <<1 µm up to 4 µm, and a length which is in the range from ~2 to
~30 µm (average ~18 µm). In particular, ~95% of fibers are characterized by a small diameter (<1.5 µm,
average 0.6 µm), and more than 30% of the measured fibers have a very small diameter (<0.3 µm,
average 0.25 µm). According to [18] indications, all of these fibers may be considered as “inhalable,”
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and they are well within the range of the “more carcinogenic fibers” regarding diameter [3]. The main
mode observed in the offretite fibers of MB2287 is 20–25 µm, and ~93% of the measured fibers are
>5 µm, and therefore they may also be significantly associated with carcinogenesis when breathed
in term of lengths [3,10,19]. About the physical features, particular attention also needs to be paid to
reliably evaluating the toxicological effects related not only to the dimension of offretite fibers, but also
to their flexibility and their tendency to split, features that may significantly modify their surface area
and, consequently, their reactivity [18,79]. The various offretite samples show different mechanical
behavior, having an extremely fibrous with flexible to rigid appearance or forming prismatic to
acicular, brittle crystals. In the mineral fibers, the flexibility might significantly transform the shape of
the particles, leading to variations of both aerodynamic properties and physical particle deposition
mechanisms [80,81].

The chemical-structural features of the mineral fibers are also of critical importance to evaluate
the pathological changes, being related to their durability in the human body. Bearing in mind that
the interactions between fibers and biological environment occur on the fiber surface, the surface
chemical composition and specific surface area are the most important elements that need to be
considered. The chemical composition of the investigated offretite samples is coherent with reference
data: R ranges from 0.71 to 0.74, the EF cations K+, Mg2+ and Ca2+ are present in all samples in
comparable proportions, and Na+, Sr2+, Ba2+ and Fe are absent. All compositions plot within the
offretite field in the ternary diagram of Figure 6. However, observing the chemical data in greater
detail, it can be observed that the prismatic to acicular crystals have similar compositions, with Mg2+

content slightly lower than K+ and Ca2+; differently, the fibrous offretite is characterized by a Mg2+

content which is slightly higher than that of the other EF cations. The crystal structure of sample AD13
shows small differences concerning that of prismatic offretite [68], possibly induced by minor curling
of the fibers.

The present study indicates that, in different lithotypes of northern Italy, the zeolite offretite may
crystallize with asbestiform habit, and therefore may be potentially harmful. This is even more concrete
if one considers that many of these rocks are extensively quarried and widely employed for a variety
of uses, most commonly as an aggregate. Crushed basalt is added to many construction jobs, including
in asphalt paving, mixed with concrete, and as a rock filtering agent in many drain fields. Basalt is also
used as the bedrock for railroad tracks, providing drainage and support. As a consequence, further
than potential environmental exposure produced by natural weathering processes, occupational
exposure during the phases of extraction and processing of offretite-containing rocks should also be
taken into account, and additional environmental exposure due to the uses of such material also needs
to be considered.

For the above reason, the related host-rocks should be carefully checked before their use as
building or construction materials and, to this aim, the role of geoscientists is crucial in guiding safe
rock extraction. The present results suggest the need for a detailed Italian mapping of natural sites
characterized by the potential occurrence of fibrous minerals, with particular regard to the zeolites
erionite and offretite. Furthermore, these data can be used to assess the health risks related to the
exposure to mineral fibers during human activities, such as road constructions, quarry excavations
and farming that may induce disturbance in the mineral fibers-bearing rocks and trigger unplanned
fibers release process.

It is relevant to note that, among the fibrous zeolites, erionite is the only one that was classified as a
human carcinogen [38], although other species should not be considered intrinsically safe [82,83]. Despite
the lack of epidemiological information on populations exposed to natural asbestiform minerals other
than asbestos and erionite, we suggest that all mineral fibers of similar size, habit, and biopersistence
may carry a risk for human health.

Finally, we believe the results obtained in this research could be used: (i) to identify potentially
hazardous health areas in view of the presence of zeolite minerals fibres; (ii) to provide data for the
compulsory Italian mapping of natural sites that are characterized by the presence of the fibrous
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zeolites; and (iii) to map fibrous minerals (e.g., offretite and erionite) that are classified as non-asbestos
and, therefore, not regulated by law but that could be just as hazardous to human health.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-163X/8/2/69/s1,
Table S1: .cif data.
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