93 research outputs found
GEOMATICS TECHNIQUES FOR THE ENHANCEMENT AND PRESERVATION OF CULTURAL HERITAGE
Abstract. The deep knowledge of Cultural Heritage, with historical research and interpretative analysis of materials, is fundamental to know the state of conservation and to plan potential restoration interventions. In the last years, thanks to the fast and continuous technological development, the metrical survey had a significant increase in this particular field: in fact, 3D digital acquisition allows to study some aspects otherwise difficult to investigate in a detailed way.In this research, we will explain the methodology used for the ceiling's survey of the Sala Capitolare of the Scuola Grande di San Rocco in Venice, focusing on the support structure of Tintoretto's paintings, anchored to a wooden system of Palladian trusses. The complexity of this Venetian architecture, its considerable dimension, the richness of decorations and the particular lighting conditions provided the opportunity of thinking about unconventional choices to apply from time to time and they required the integration of different methodologies: the laser scanning survey and the photogrammetric acquisition, together with a topographic network, allowed to obtain an adequate metric result for the study of the structure in its entirety. Furthermore, it was also decided to test image acquisition with a spherical camera for the documentation of the analysed architecture: this type of information, more related to a viewable aspect than to a metric one, can be presented together with traditional 2D representations to ensure a better enhancement of the achieved results.</p
Tooteko: A case study of augmented reality for an accessible cultural heritage. Digitization, 3D printing and sensors for an audio-tactile experience
Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: A high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital Architecture of the University of Venice (IUAV) in 2012. Now Tooteko is now a start up company based in Venice, Italy
From point cloud to digital fabrication: A tangible reconstruction of Ca' Venier dei Leoni, the Guggenheim Museum in Venice
The paper describes how new digital methodologies can be used within the field of Cultural Heritage, not only with the aim of documenting the actual state of an architecture but to review the past transformations it has undergone, conserving and representing these histories as well. The premise to conservation and enhancement of our Heritage is a deep study in terms of position, shape, colour, and also of the historical and artistic features. Survey methods have acquired data acquisition techniques in line with technological progress: today's electronic and IT technologies, that are the tools of modern Geomatics, allow the effective survey and representation of 3D objects, from architectural structures to sculptures or archaeological finds. Over the last few years, the methodologies of acquisition and integrated representation for 3D patrimony documentation have developed and consolidated considerably: the possibilities of the digital realm can augment the understanding and the valorisation of a monument. The specific case offered in the present paper, Ca' Venier dei Leoni, the palace where is the Guggenheim Museum in Venice, is a significant example. It suggests not only the theme of the "no longer existing", or better never built, but also the opportunity to formulate hypotheses regarding its implementation and the impact that the palace would have had in the Venetian contest
Villa Stein-De-Monzie by Le Corbusier (1926-1928). Conservation strategies between research and education
The paper focuses on the educational experience produced during the International Workshop, organized by the IUAV University of Venice and dedicated to both the understanding and conservation of the maison Stein-de-Monzie "Les Terrasses", an emblematic work of Le Corbusier's early career period. The villa, located in Garches (Vaucresson), was designed and built between 1926 and 1928, the exact same years when Le Corbusier was elaborating the "Five Points of Architecture" (1927): the building is the first complete application of these principles, while it represents an evolution of the maison Dom-Ino's structural scheme. Nowadays, both the interior spaces and the external surfaces of the maison Stein-de-Monzie show profound changes caused by problematic events leading to the present-day appearance of the building, in many cases misrepresenting the original design goals. The building's integrated instrumental survey (laser scanning, photogrammetry, topography) allowed to document and understand the history of the villa beyond the mere and well known project phase, contributing to the definition of the actual construction characteristics and to ascertain both the material consistency and the state of conservation. The knowledge acquisition process &ndash; supported by survey data &ndash; constitutes a prerequisite to outline the design of new solutions, which could effectively express the cultural choices connected to the conservation of the Twentieth-Century built heritage
SURVEY METHODS FOR SEISMIC VULNERABILITY ASSESSMENT OF HISTORICAL MASONRY BUILDINGS
On 20th and 29th of May 2012, two powerful earthquakes struck northern Italy. The epicentres were recorded respectively in Finale Emilia (magnitude 5.9 Ml) and Medolla (magnitude 5.8 Ml) in the province of Modena, though the earthquake was formed by a series of seismic shakes located in the district of the Emilian Po Valley, mainly in the provinces of Modena, Ferrara, Mantova, Reggio Emilia, Bologna and Rovigo. Many monuments in the city of Mantova were hit by the earthquake and, among these, Palazzo Ducale with the well-known Castello di San Giorgio which host the noteworthy "Camera degli Sposi". This building, the most famous of the city, was so damaged that it was closed for more than one year after the earthquake. The emblem of the Palace and Mantova itself, the previously cited "Camera degli Sposi" realized by Andrea Mantegna, was damaged and all the economic and social life of the city was deeply affected. Immediately after the earthquake, the Soprintendenza per i Beni Architettonici e Paesaggistici of Brescia, Cremona and Mantova establish an agreement with the University Iuav of Venice, requiring an analysis and assessment of the damage in order to proceed with the development of an intervention project. This activity turned out to be very important not only from the point of view of the recovery of the architectural and artistic heritage but also because the city's economy is based primarily on tourism. The closure of one of the most important monuments of Mantova has led to a significant and alarming decline in the government income
Digitization approaches for urban cultural heritage : last generation MMS within Venice outdoors scenarios
This paper explores the use of Mobile Mapping Systems (MMSs) for urban Cultural Heritage (CH) documentation, which has become
an increasingly important tool in surveying for rapid and accurate mapping of both internal and external environments. The study
evaluates the performance of the STONEX® X120GO SLAM Laser Scanner, a recent commercial MMS, in documenting CH in various
outdoor applications, including urban environments and inaccessible places. The methodology was applied to three test fields in the
historic centre of Venice, which include Piazza San Marco, Santa Marta area, and the Venetian canal called Rio de le Toresele. The
STONEX® X120GO SLAM Laser Scanner is composed of a 360° rotating head LiDAR scanner, three 5MP cameras, and an Inertial
Measurement Unit (IMU) and Global Navigation Satellite System (GNSS) for geospatial 3D point cloud creation. The MMS was
evaluated in terms of time, accuracy, and point cloud resolution against other active sensors such as Terrestrial Laser Scanners (TLSs)
and spherical photogrammetry. The results suggest that the tested MMS has reached optimal levels of development, enabling highspeed data collection and providing good accuracy for significant urban CH sites. Overall, the paper highlights the importance and
potential of MMSs for CH documentation and emphasizes the need for ongoing development to optimize the management proces
METRIC DOCUMENTATION OF CULTURAL HERITAGE: RESEARCH DIRECTIONS FROM THE ITALIAN GAMHER PROJECT
GAMHer is a collaborative project that aims at exploiting and validating Geomatics algorithms, methodologies and procedures in the framework of new European regulations, which require a more extensive and productive use of digital information, as requested by the Digital Agenda for Europe as one of the seven pillars of the Europe 2020 Strategy. To this aim, GAMHer focuses on the need of a certified accuracy for surveying and monitoring projects with photogrammetry and laser scanning technologies, especially when used in a multiscale approach for landscape and built heritage documentation, conservation, and management. The approach used follows a multi-LoD (level of detail) transition that exploits GIS systems at the landscape scale, BIM technology and "point cloud based" 3d modelling for the scale of the building, and an innovative BIM/GIS integrated approach to foster innovation, promote users' collaboration and encourage communication between users. The outcomes of GAMHer are not intended to be used only by a community of Geomatics specialists, but also by a heterogeneous user community that exploit images and laser scans in their professional activities
3D INTEGRATED METHODOLOGIES FOR THE DOCUMENTATION AND THE VIRTUAL RECONSTRUCTION OF AN ARCHAEOLOGICAL SITE
Highly accurate documentation and 3D reconstructions are fundamental for analyses and further interpretations in archaeology. In the last years the integrated digital survey (ground-based survey methods and UAV photogrammetry) has confirmed its main role in the documentation and comprehension of excavation contexts, thanks to instrumental and methodological development concerning the on site data acquisition. The specific aim of the project, reported in this paper and realized by the Laboratory of Photogrammetry of the IUAV University of Venice, is to check different acquisition systems and their effectiveness test, considering each methodology individually or integrated. This research focuses on the awareness that the integration of different survey's methodologies can as a matter of fact increase the representative efficacy of the final representations; these are based on a wider and verified set of georeferenced metric data. Particularly the methods' integration allows reducing or neutralizing issues related to composite and complex objects' survey, since the most appropriate tools and techniques can be chosen considering the characteristics of each part of an archaeological site (i.e. urban structures, architectural monuments, small findings). This paper describes the experience in several sites of the municipality of Sepino (Molise, Italy), where the 3d digital acquisition of cities and structure of monuments, sometimes hard to reach, was realized using active and passive techniques (rage-based and image based methods). This acquisition was planned in order to obtain not only the basic support for interpretation analysis, but also to achieve models of the actual state of conservation of the site on which some reconstructive hypotheses can be based on. Laser scanning data were merged with Structure from Motion techniques' clouds into the same reference system, given by a topographical and GPS survey. These 3d models are not only the final results of the metric survey, but also the starting point for the whole reconstruction of the city and its urban context, from the research point of view. This reconstruction process will concern even some areas that have not yet been excavated, where the application of procedural modelling can offer an important support to the reconstructive hypothesis
Metric documentation of cultural heritage: Research directions from the Italian gamher project
GAMHer is a collaborative project that aims at exploiting and validating Geomatics algorithms, methodologies and procedures in the framework of new European regulations, which require a more extensive and productive use of digital information, as requested by the Digital Agenda for Europe as one of the seven pillars of the Europe 2020 Strategy. To this aim, GAMHer focuses on the need of a certified accuracy for surveying and monitoring projects with photogrammetry and laser scanning technologies, especially when used in a multiscale approach for landscape and built heritage documentation, conservation, and management. The approach used follows a multi-LoD (level of detail) transition that exploits GIS systems at the landscape scale, BIM technology and "point cloud based" 3d modelling for the scale of the building, and an innovative BIM/GIS integrated approach to foster innovation, promote users' collaboration and encourage communication between users. The outcomes of GAMHer are not intended to be used only by a community of Geomatics specialists, but also by a heterogeneous user community that exploit images and laser scans in their professional activities
MULTI-SCALE AND MULTI-SENSOR APPROACHES FOR THE PROTECTION OF CULTURAL NATURAL HERITAGE: THE ISLAND OF SANTO SPIRITO IN VENICE
The study of Cultural Natural Heritage (CNH) requires the development of multi-disciplinary and multi-scale methodologies for data recording, representation, and correlation from various platforms such as terrestrial, aerial and satellite sensors. The heterogeneity of geo-databases currently available demands on-site validation and time monitoring to control the phenomena related to climate change that inevitably affect the Cultural Heritage (CH). The pressures stressing the territorial dimension due to climatic changes lead to the decrease of essential resources and burden on the CH. To overcome the lack of information needed at various territorial scales, it becomes necessary to construct detailed and dynamic cognitive frameworks. This paper establishes a multitemporal information framework regarding the case study area, the Island of Santo Spirito in Venice, using several geomatic techniques to investigate the island's ecological significance and constructed heritage. The suggested methodology uses the integration of multitemporal data resulting from the processing of satellite images provided by the Copernicus satellites (Sentinel-2) and data from geomatic documentation techniques. Two separate methods were used in the survey operations: a Terrestrial Laser Scanning (TLS) and aerial photogrammetry from Uncrewed Aerial Vehicles (UAV) survey. The integration of satellite, aerial, and terrestrial data has allowed a complete knowledge of the necessary parameters for the monitoring of the CH of the area. In order to manage conservative policy from a preventive perspective and to recreate and digitally visualize missing historical phases, programmed monitoring is a crucial instrument
- …