11 research outputs found

    Nonautonomous dynamical systems: from theory to applications

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Matemáticas. Fecha de lectura: 27-04-201

    Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems

    Get PDF
    In this paper we introduce a new technique for depicting the phase portrait of stochastic differential equations. Following previous work for deterministic systems, we represent the phase space by means of a generalization of the method of Lagrangian descriptors to stochastic differential equations. Analogously to the deterministic differential equations setting, the Lagrangian descriptors graphically provide the distinguished trajectories and hyperbolic structures arising within the stochastic dynamics, such as random fixed points and their stable and unstable manifolds. We analyze the sense in which structures form barriers to transport in stochastic systems. We apply the method to several benchmark examples where the deterministic phase space structures are well-understood. In particular, we apply our method to the noisy saddle, the stochastically forced Duffing equation, and the stochastic double gyre model that is a benchmark for analyzing fluid transport

    A Theoretical Framework for Lagrangian Descriptors

    Get PDF
    This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigourous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for nn-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as nn-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors

    Chaotic Dynamics in Nonautonomous Maps:Application to the Nonautonomous HĂ©non Map

    Get PDF
    In this paper, we analyze chaotic dynamics for two-dimensional nonautonomous maps through the use of a nonautonomous version of the Conley–Moser conditions given previously. With this approach we are able to give a precise definition of what is meant by a chaotic invariant set for nonautonomous maps. We extend the nonautonomous Conley–Moser conditions by deriving a new sufficient condition for the nonautonomous chaotic invariant set to be hyperbolic. We consider the specific example of a nonautonomous Hénon map and give sufficient conditions, in terms of the parameters defining the map, for the nonautonomous Hénon map to have a hyperbolic chaotic invariant set. </jats:p

    Arctic circulation from a Lagrangian perspective

    Get PDF
    [EN] In the context of rapid increase of temperature in the polar regions, inducing a dramatic ice melting, Lagrangian transport in the Arctic Ocean becomes an area of key interest. There exists evidence of changes in the circulation of water masses at different depths such as a notable decrease in intensity of the so-called Beaufort Gyre and the discharge of a great amount of fresh water into the North-West Atlantic Ocean. These facts may have a direct impact on the global circulation of water and heat. The aim of this talk is to show the phase portrait of the sea currents throughout the Arctic Ocean, which allows us to study aspects of their dynamics. This is done by means of the numerical method known as Lagrangian descriptors, which computes and graphically displays flow structures over a given domain of the ocean, highlighting coherent jet circulation patterns in red color.The research of FB-I, VG-G and AMM is supported by the MINECO under grant MTM2014-56392-R. We acknowledge support from MINECO: ICMAT Severo Ochoa project SEV-2011-0087
    corecore