585 research outputs found

    Metallic nanoparticles meet Metadynamics

    Get PDF
    We show how standard Metadynamics coupled with classical Molecular Dynamics can be successfully ap- plied to sample the configurational and free energy space of metallic and bimetallic nanopclusters via the implementation of collective variables related to the pair distance distribution function of the nanoparticle itself. As paradigmatic examples we show an application of our methodology to Ag147, Pt147 and their alloy AgshellPtcore at 1:1 and 2:1 chemical compositions. The proposed scheme is not only able to reproduce known structural transformation pathways, as the five and the six square-diamond mechanisms both in pure and core-shell nanoparticles but also to predict a new route connecting icosahedron to anti-cuboctahedron.Comment: 7 pages, 8 figure

    A diffusion Monte Carlo study of small para-Hydrogen clusters

    Get PDF
    Ground state energies and chemical potentials of parahydrogen clusters are calculated from 3 to 40 molecules using the diffusion Monte Carlo technique with two different pH2-pH2 interactions. This calculation improves a previous one by the inclusion of three-body correlations in the importance sampling, by the time step adjustement and by a better estimation of the statistical errors. Apart from the cluster with 13 molecules, no other magic clusters are predicted, in contrast with path integral Monte Carlo results

    Ethanol chemisorption on core-shell Pt-nanoparticles: an ab-initio study

    Get PDF
    By means of ab-initio calculations, we have investigated the chemisorption paroperties of ethanol onto segregating binary nanoalloys. We select nanostructures with icosahedral shape of 55 atoms with a Pt outermost layer over a M core with M=Ag,Pd,Ni. With respect to nanofilms with equivalent composition, there is an increse of the ethanol binding energy. This is not merely due to observed shortening of the Pt-O distance but depends on the nanoparticle distortion after ethanol adsorption. This geometrical distortion within the nanoparticle can be interpreted as a radial breathing, which is sensitive to the adsortion site, identified by the O-anchor point and the relative positions of the ethyl group. More interestingly, being core-dependent -larger in Pd@Pt and smaller in Ni@Pt-, it relates to an effective electron transfer from ethanol and the M-core towards the Pt-shell. On the view of this new analysis, Pd@Pt nanoalloys show the most promissing features for ethanol oxidation

    Lead clusters: different potentials, different structures

    Full text link
    The lowest-energy structures of lead clusters interacting via a Gupta potential are obtained for N<151. Structures based on Marks decahedra dominate at the larger sizes. These results are very different from those obtained previously using a lead glue potential, and the origins of the differences are related back to differences in the potential.Comment: 6 pages, 4 figures, TAMC4 proceeding
    corecore