20 research outputs found

    Propriétés de l'état normal des cuprates sous-dopés sous champ magnétique intense

    Get PDF
    Dans cette thĂšse, nous nous sommes intĂ©ressĂ©s Ă  la physique des supraconducteurs Ă  haute tempĂ©rature critique et Ă  leur diagramme de phase. Depuis leur dĂ©couverte en 1986, ces matĂ©riaux ont suscitĂ© un fort engouement notamment Ă  cause de leur tempĂ©rature critique Ă©levĂ©e. La phase supraconductrice, dans le diagramme de phase de ces matĂ©riaux, prĂ©sente un dĂŽme avec une tempĂ©rature critique maximale qui dĂ©limite le cĂŽtĂ© sous dopĂ© (Ă  gauche) du cotĂ© sur dopĂ© (Ă  droite). Ce dĂŽme est situĂ© entre une phase isolante et une phase mĂ©tallique (type liquide de Fermi). Afin de comprendre l'origine de la supraconductivitĂ©, il est important de bien caractĂ©riser la phase normale Ă  partir de laquelle elle se dĂ©veloppe. Nous nous sommes particuliĂšrement intĂ©ressĂ©s aux propriĂ©tĂ©s Ă  basse tempĂ©rature. Pour cela, des champs magnĂ©tiques intenses ont Ă©tĂ© nĂ©cessaires afin de dĂ©truire la supraconductivitĂ© et de restaurer l'Ă©tat normal Ă  basse tempĂ©rature. Les oscillations quantiques ont Ă©tĂ© dĂ©couvertes en 2007, dans ces matĂ©riaux, par des mesures de rĂ©sistivitĂ© et d'aimantation sous champ magnĂ©tique intense et Ă  basse tempĂ©rature. La prĂ©sence d'oscillations quantiques de faibles frĂ©quences associĂ©es Ă  des coefficients de Hall et Seebeck nĂ©gatifs ont mis en Ă©vidence la prĂ©sence d'une petite poche d'Ă©lectrons dans la surface de Fermi couvrant seulement 1.9% de la premiĂšre zone de Brillouin (PZB) du cĂŽtĂ© sous dopĂ©. Ceci est incompatible avec les calculs de structure de bandes. Ce rĂ©sultat est en fort contraste avec les oscillations quantiques mesurĂ©es dans les cuprates sur-dopĂ©s qui correspondent Ă  la large orbite de type trou prĂ©dite par les calculs de structure de bandes et qui occupe 65% de la PZB. La prĂ©sence de cette petite poche d'Ă©lectrons dans des composĂ©s sous-dopĂ©s en trous peut ĂȘtre expliquĂ©e par une reconstruction de la surface de Fermi. En effet, des mesures de RMN et de rayons X ont montrĂ© la prĂ©sence d'une onde de densitĂ© de charge en compĂ©tition avec la supraconductivitĂ©. Pour Ă©tudier plus en dĂ©tail cette reconstruction et la relation entre la surface de Fermi dĂ©duite des oscillations quantiques et l'ordre de charge, nous avons rĂ©alisĂ© diffĂ©rentes sĂ©ries de mesures Ă  70T dans une large gamme de dopage, de champs magnĂ©tiques et de tempĂ©ratures pour des Ă©chantillons d'YBa2Cu3Oy. Nous avons Ă©galement utilisĂ© la pression hydrostatique pour induire un changement de dopage sur un mĂȘme Ă©chantillon. Ces mesures ont rĂ©vĂ©lĂ© la prĂ©sence d'une nouvelle sĂ©rie d'oscillations de plus faible frĂ©quence que nous avons associĂ© Ă  une poche de trou. Ce rĂ©sultat permet d'expliquer plusieurs propriĂ©tĂ©s de transport mesurĂ©es dans le composĂ© YBa2Cu3Oy. En parallĂšle, nous avons Ă©galement rĂ©alisĂ© des mesures de transport dans des Ă©chantillons de HgBa2CuO4+?, considĂ©rĂ© comme un matĂ©riau modĂšle de la famille des cuprates (absence de chaĂźne et structure monoplan). Nous avons rĂ©ussi Ă  observer des oscillations quantiques, similaires Ă  celles observĂ©es dans YBa2Cu3Oy. Ceci a permis de dĂ©montrer l'universalitĂ© de ce phĂ©nomĂšne dans les cuprates et de confirmer de maniĂšre indiscutable que les plans conducteurs sont le siĂšge de la reconstruction de la surface de Fermi Ă  l'origine de ces oscillations quantiques. Enfin, nous avons effectuĂ© diffĂ©rentes simulations de reconstruction de la surface de Fermi basĂ©es sur un ordre de charge bi-axial qui a rĂ©cemment Ă©tĂ© mis en Ă©vidence par des mesures de RMN, de rayons X et de vitesse du son. Les surfaces de Fermi obtenues ont Ă©tĂ© comparĂ©es aux mesures expĂ©rimentales.In this thesis, we have studied in high temperature superconductors and their phase diagram. Since their discovery in 1986, these materials have generated great interest, especially because of their high critical temperature. In the generic phase diagram of these materials, the superconducting phase is a dome with a maximal critical temperature, which defines the under-doped side (left-side of the phase diagram) and the over-doped side (right-side of the phase diagram). The dome is located between an insulating phase and a metallic phase (Fermi-liquid like). In order to understand the origin of superconductivity, it is essential to characterize the normal phase from which superconductivity arises, in particular at low temperature. Therefore, high magnetic fields were needed to destroy superconductivity and restore the low temperature normal state. Quantum oscillations have been discovered in 2007 in these materials, thanks to resistivity and magnetization measurements under high magnetic fields and low temperature. Quantum oscillations and negative Hall and Seebeck coefficients have revealed the presence of a small electron pocket in the Fermi surface of the underdoped side, covering only 2% of the first Brillouin zone (FBZ). This is in disagreement with band-structure calculations. In contrast quantum oscillations in overdoped cuprates revealed the large hole-like orbit, covering 65% of the FBZ, as predicted by the band structure calculations. The presence of this small electron pocket in underdoped compounds can be explained by a Fermi surface reconstruction. Indeed, RMN and X-rays measurements have shown the presence of a charge density wave in competition with superconductivity. To study the relationship between the Fermi surface deduced from quantum oscillations and the charge order, we have followed the evolution of the oscillation frequencies as a function of doping. Therefore, we have performed different measurements on YBa2Cu3Oy in a wide range of doping, magnetic fields (up to 70T) and temperatures. We also used hydrostatic pressure to induce a change of doping on the same sample. These measurements have revealed the presence of a new series of oscillations with a lower frequency which has been associated to a holepocket. This result allows us to explain some of the transport properties measured in YBa2Cu3Oy compound. In addition, we have also performed transport measurements in HgBa2CuO4+? samples, considered as a textbook material of the cuprate family (monolayer structure and no CuO chain). We have succeeded to observe quantum oscillations similar to those observed in YBa2Cu3Oy. This demonstrates the universality of this phenomenon in cuprates and clearly demonstrates that reconstruction of the Fermi surface involves the quintessential CuO2 planes. Finally, we have performed various simulations of Fermi surface reconstruction based on a biaxial charge order recently discovered by NMR, X-ray and sound velocity measurements. The reconstructed Fermi surface has been compared with experimental measurements

    Inverse correlation between quasiparticle mass and Tc in a cuprate high-Tc superconductor

    Get PDF
    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature Tc is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-ÎŽ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-Tc superconductivity. We have tested the robustness of this correlation between m* and Tc by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-ÎŽ, we find that in YBa2Cu4O8, the mass decreases as Tc increases under pressure. This inverse correlation between m* and Tc suggests that quantum fluctuations of the charge order enhance m* but do not enhance Tc

    Universal quantum oscillations in the underdoped cuprate superconductors

    Full text link
    The metallic state of the underdoped high-Tc cuprates has remained an enigma: How may seemingly disconnected Fermi surface segments, observed in zero magnetic field as a result of the opening of a partial gap (the pseudogap), possess conventional quasiparticle properties? How do the small Fermi-surface pockets evidenced by the observation of quantum oscillations (QO) emerge as superconductivity is suppressed in high magnetic fields? Such QO, discovered in underdoped YBa2Cu3O6.5 (Y123) and YBa2Cu4O8 (Y124), signify the existence of a conventional Fermi surface (FS). However, due to the complexity of the crystal structures of Y123 and Y124 (CuO2 double-layers, CuO chains, low structural symmetry), it has remained unclear if the QO are specific to this particular family of cuprates. Numerous theoretical proposals have been put forward to explain the route toward QO, including materials-specific scenarios involving CuO chains and scenarios involving the quintessential CuO2 planes. Here we report the observation of QO in underdoped HgBa2CuO4+{\delta} (Hg1201), a model cuprate superconductor with individual CuO2 layers, high tetragonal symmetry, and no CuO chains. This observation proves that QO are a universal property of the underdoped CuO2 planes, and it opens the door to quantitative future studies of the metallic state and of the Fermi-surface reconstruction phenomenon in this structurally simplest cuprate.Comment: 17 pages, 5 figure

    Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La 2 − x Sr x CuO 4

    Get PDF
    International audienceThe Seebeck coefficient S of the cuprate superconductor La2−xSrxCuO4 (LSCO) was measured in magnetic fields large enough to access the normal state at low temperatures, for a range of Sr concentrations from x=0.07 to x=0.15. For x=0.11, 0.12, 0.125 and 0.13, S/T decreases upon cooling to become negative at low temperatures. The same behavior is observed in the Hall coefficient RH(T). In analogy with other hole-doped cuprates at similar hole concentrations p, the negative S and RH show that the Fermi surface of LSCO undergoes a reconstruction caused by the onset of charge-density-wave modulations. Such modulations have indeed been detected in LSCO by X-ray diffraction in precisely the same doping range. Our data show that in LSCO this Fermi-surface reconstruction is confined to 0.085<p<0.15. We argue that in the field-induced normal state of LSCO, charge-density-wave order ends at a critical doping pCDW=0.15±0.005, well below the pseudogap critical doping p⋆≃0.19
    corecore