15 research outputs found

    Comparison of Biomaterial-Dependent and -Independent Bioprinting Methods for Cardiovascular Medicine

    Get PDF
    There is an increasing need of human organs for transplantation, of alternatives to animal experimentation, and of better in vitro tissue models for drug testing. All these needs create unique opportunities for the development of novel and powerful tissue engineering methods, among which the 3D bioprinting is one of the most promising. However, after decades of incubation, ingenuous efforts, early success and much anticipation, biomaterial-dependent 3D bioprinting, although shows steady progress, is slow to deliver the expected clinical results. For this reason, alternative ‘scaffold-free’ 3D bioprinting methods are developing in parallel at an accelerated pace. In this opinion paper we discuss comparatively the two approaches, with specific examples drawn from the cardiovascular field. Moving the emphasis away from competition, we show that the two platforms have similar goals but evolve in complementary technological niches. We conclude that the biomaterial-dependent bioprinting is better suited for tasks requiring faster, larger, anatomically-true, cell-homogenous and matrix-rich constructs, while the scaffold-free biofabrication is more adequate for cell-heterogeneous, matrix-poor, complex and smaller constructs, but requiring longer preparation time

    TSG-6 is highly expressed in human abdominal aortic aneurysms

    Get PDF
    BACKGROUND: The formation of abdominal aortic aneurysms (AAA) is characterized by a dominance of proinflammatory forces that result in smooth muscle cell apoptosis, extracellular matrix degradation, and progressive diameter expansion. Additional defects in the antiinflammatory response may also play a role but have yet to be fully characterized. TSG-6 (TNF-stimulated gene-6) is a potent antiinflammatory protein involved in extracellular matrix stabilization and cell migration active in many pathological conditions. Here, we describe its role in AAA formation. METHODS: Blood and/or aortic tissue samples were collected from organ donors, subjects undergoing elective AAA screening, and open surgical AAA repair. Aortic specimens collected were preserved for IHC or immediately assayed after tissue homogenization. Protein concentrations in tissue and plasma were assayed by ELISA. All immune cell populations were assayed using FACS. In vitro, macrophage polarization from monocytes was performed with young, healthy donor PBMCs. RESULTS: TSG-6 was found to be abnormally elevated in both the plasma and aortic wall of patients with AAA compared with healthy and risk-factor matched non-AAA donors. We observed the highest tissue concentration of TSG-6 in the less-diseased proximal and distal shoulders compared with the central aspect of the aneurysm. IHC localized most TSG-6 to the tunica media with minor expression in the tunica adventitia of the aortic wall. Higher concentrations of both M1 and M2 macrophages where also observed, however M1/M2 ratios were unchanged from healthy controls. We observed no difference in M1/M2 ratios in the peripheral blood of risk-factor matched non-AAA and AAA patients. Interesting, TSG-6 inhibited the polarization of the antiinflammatory M2 phenotype in vitro. CONCLUSIONS: AAA formation results from an imbalance of inflammatory forces causing aortic wall infiltration of mononuclear cells leading to the vessel breakdown. In the AAA condition, we report an elevation of TSG-6 expression in both the aortic wall and the peripheral circulation

    Human Adipose-Derived Stem Cells Suppress Elastase-Induced Murine Abdominal Aortic Inflammation and Aneurysm Expansion Through Paracrine Factors

    Get PDF
    Abdominal aortic aneurysm (AAA) is a potentially lethal disease associated with immune activation-induced aortic degradation. We hypothesized that xenotransplantation of human adipose-derived stem cells (hADSCs) would reduce aortic inflammation and attenuate expansion in a murine AAA model. Modulatory effects of ADSCs on immune cell subtypes associated with AAA progression were investigated using human peripheral blood mononuclear cells (hPBMNCs) cocultured with ADSCs. Murine AAA was induced through elastase application to the abdominal aorta in C57BL/6 mice. ADSCs were administered intravenously, and aortic changes were determined by ultrasonography and videomicrometry. Circulating monocytes, aortic neutrophils, CD28− T cells, FoxP3+ regulatory T cells (Tregs), and CD206+ M2 macrophages were assessed at multiple terminal time points. In vitro, ADSCs induced M2 macrophage and Treg phenotypes while inhibiting neutrophil transmigration and lymphocyte activation without cellular contact. Intravenous ADSC delivery reduced aneurysmal expansion starting from day 4 [from baseline: 54.8% (saline) vs. 16.9% (ADSCs), n = 10 at baseline, n = 4 at day 4, p < 0.001], and the therapeutic effect persists through day 14 (from baseline: 64.1% saline vs. 24.6% ADSCs, n = 4, p < 0.01). ADSC administration increased aortic Tregs by 20-fold (n = 5, p < 0.01), while decreasing CD4+CD28− (-28%), CD8+CD28− T cells (-61%), and Ly6G/C+ neutrophils (-43%, n = 5, p < 0.05). Circulating CD115+CXCR1−LY6C+-activated monocytes decreased in the ADSC-treated group by day 7 (-60%, n = 10, p < 0.05), paralleled by an increase in aortic CD206+ M2 macrophages by 2.4-fold (n = 5, p < 0.05). Intravenously injected ADSCs transiently engrafted in the lung on day 1 without aortic engraftment at any time point. In conclusion, ADSCs exhibit pleiotropic immunomodulatory effects in vitro as well as in vivo during the development of AAA. The temporal evolution of these effects systemically as well as in aortic tissue suggests that ADSCs induce a sequence of anti-inflammatory cellular events mediated by paracrine factors, which leads to amelioration of AAA progression

    Rab10 associates with primary cilia and the exocyst complex in renal epithelial cells

    No full text
    Rab10, a mammalian homolog of the yeast Sec4p protein, has previously been associated with endocytic recycling and biosynthetic membrane transport in cultured epithelia and with Glut4 translocation in adipocytes. Here, we report that Rab10 associates with primary cilia in renal epithelia in culture and in vivo. In addition, we find that Rab10 also colocalizes with exocyst proteins at the base of nascent cilia, and physically interacts with the exocyst complex, as detected with anti-Sec8 antibodies. These data suggest that membrane transport to the primary cilum may be mediated by interactions between Rab10 and an exocyst complex located at the cilium base

    Rationale and Design of the ARREST Trial Investigating Mesenchymal Stem Cells in the Treatment of Small Abdominal Aortic Aneurysm

    No full text
    Background Abdominal aortic aneurysms (AAAs) are a major source of morbidity and mortality despite continuing advances in surgical technique and care. Although the inciting factors for AAA development continue to be elusive, accumulating evidence suggests a significant periaortic inflammatory response leading to degradation and dilation of the aortic wall. Previous human trials have demonstrated safety and efficacy of mesenchymal stem cells (MSCs) in the treatment of inflammation-related pathologies such as rheumatoid arthritis, graft versus host disease, and transplant rejection. Therefore, herein, we describe the Aortic Aneurysm Repression with Mesenchymal Stem Cells (ARREST) trial, a phase I investigation into the safety of MSC infusion for patients with small AAA and the cells' effects on modulation of AAA-related inflammation. Methods ARREST is a phase I, single-center, double-blind, randomized controlled trial (RCT) investigating infusion both dilute and concentrated MSCs compared to placebo in 36 small AAA (35–45 mm) patients. Subjects will be followed by study personnel for 12 months to ascertain incidence of adverse events, immune cell phenotype expression, peripheral cytokine profile, and periaortic inflammation. Maximum transverse aortic diameter will be assessed regularly for 5 years by a combination of computed tomography and duplex sonography. Results Four patients have thus far been enrolled, randomized, and treated per protocol. We anticipate the conclusion of the treatment phase within the next 24 months with ongoing long-term follow-up. Conclusions ARREST will be pivotal in assessing the safety of MSC infusion and provide preliminary data on the ability of MSCs to favorably modulate the pathogenic AAA host immune response. The data gleaned from this phase I trial will provide the groundwork for a larger, phase III RCT which may provide the first pharmaceutical intervention for AAA
    corecore