1,064 research outputs found

    Building a CTU Orientation Handbook iPad® application for first-year residents

    Get PDF
    Background: The General Internal Medicine Clinical Teaching Unit (CTU) is a challenging rotation for new residents and the optimal format of orientation has not been determined. We hypothesized that an iPad®application (app) would be a useful reference tool after residents completed their traditional large group orientation. Methods: Postgraduate year 1 (PGY1) residents were sent a link to download the free app one week before the start of their rotation. A pre-usage survey at initial login collected basic demographics. Usage data was collected to determine the sections, duration, and the timeframe from which the app was utilized.Results: Pre-usage survey data revealed that 63% of participants were female, 69% felt the app would improve orientation, and 94% were comfortable using mobile technology for medical education. Usage data showed “Teaching Sessions and Schedules,” “The Consult Note,” and “Admission Orders” were the three sections most commonly used. The most usage was during the evening call shift (10pm to 6am), followed by the morning shift (6am to 5pm).   Conclusion: The CTU Orientation App was a useful supplement to the traditional orientation. Researchers may not be able to predict what content would be most valuable in an iPad® app, thus pre-development needs-assessments and usage feedback are crucial.

    Nanoscale MXene Interlayer and Substrate Adhesion for Lubrication: A Density Functional Theory Study

    Get PDF
    Understanding the interlayer interaction at the nanoscale in two-dimensional (2D) transition metal carbides and nitrides (MXenes) is important to improve their exfoliation/delamination process and application in (nano)-tribology. The layer-substrate interaction is also essential in (nano)-tribology as effective solid lubricants should be resistant against peeling-off during rubbing. Previous computational studies considered MXenes' interlayer coupling with oversimplified, homogeneous terminations while neglecting the interaction with underlying substrates. In our study, Ti-based MXenes with both homogeneous and mixed terminations are modeled using density functional theory (DFT). An ad hoc modified dispersion correction scheme is used, capable of reproducing the results obtained from a higher level of theory. The nature of the interlayer interactions, comprising van der Waals, dipole-dipole, and hydrogen bonding, is discussed along with the effects of MXene sheet's thickness and C/N ratio. Our results demonstrate that terminations play a major role in regulating MXenes' interlayer and substrate adhesion to iron and iron oxide and, therefore, lubrication, which is also affected by an external load. Using graphene and MoS2 as established references, we verify that MXenes' tribological performance as solid lubricants can be significantly improved by avoiding -OH and -F terminations, which can be done by controlling terminations via post-synthesis processing

    The development of RAPTA compounds for the treatment of tumors

    Get PDF
    © 2015 Elsevier B.V. Ruthenium(II)-arene RAPTA-type compounds have been extensively explored for their medicinal properties. Herein a comprehensive review of this class of compounds is provided. A discussion of the basic RAPTA structure is given together with the ways it has been modified to elucidate the key role of each part and to afford targeted derivatives. The various mechanistic studies conducted on RAPTA compounds are described and these are linked to the observed macroscopic biological properties. Ultimately, the review shows that certain RAPTA compounds display quite unique properties that point towards a clinical investigation

    Perspectives of 2D MXene Tribology

    Get PDF
    The Large and Rapidly Growing Family of 2D Early Transition Metal Carbides, Nitrides, and Carbonitrides (MXenes) Raises Significant Interest in the Materials Science and Chemistry of Materials Communities. Discovered a Little More Than a Decade Ago, MXenes Have Already Demonstrated Outstanding Potential in Various Applications Ranging from Energy Storage to Biology and Medicine. the Past Two Years Have Witnessed Increased Experimental and Theoretical Efforts toward Studying MXenes\u27 Mechanical and Tribological Properties When Used as Lubricant Additives, Reinforcement Phases in Composites, or Solid Lubricant Coatings. Although Research on the Understanding of the Friction and Wear Performance of MXenes under Dry and Lubricated Conditions is Still in its Early Stages, It Has Experienced Rapid Growth Due to the Excellent Mechanical Properties and Chemical Reactivities Offered by MXenes that Make Them Adaptable to Being Combined with Other Materials, Thus Boosting their Tribological Performance. in This Perspective, the Most Promising Results in the Area of MXene Tribology Are Summarized, Future Important Problems to Be Pursued Further Are Outlined, and Methodological Recommendations that Could Be Useful for Experts as Well as Newcomers to MXenes Research, in Particular, to the Emerging Area of MXene Tribology, Are Provided

    2D metal carbides and nitrides (MXenes) for energy storage

    Get PDF
    The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research
    corecore