1,076 research outputs found

    Infection of a yellow baboon with simian immunodeficiency virus from African green monkeys:evidence for cross-species transmission in the wild

    Get PDF
    Many African primates are known to be naturally infected with simian immunodeficiency viruses (SIVs), but only a fraction of these viruses has been molecularly characterized. One primate species for which only serological evidence of SIV infection has been reported is the yellow baboon (Papio hamadryas cynocephalus). Two wild-living baboons with strong SIVAGM seroreactivity were previously identified in a Tanzanian national park where baboons and African green monkeys shared the same habitat (T. Kodama, D. P. Silva, M. D. Daniel, J. E. Phillips-Conroy, C. J. Jolly, J. Rogers, and R. C. Desrosiers, AIDS Res. Hum. Retroviruses 5:337-343, 1989). To determine the genetic identity of the viruses infecting these animals, we used PCR to examine SIV sequences directly in uncultured leukocyte DNA. Targeting two different, nonoverlapping genomic regions, we amplified and sequenced a 673-bp gag gene fragment and a 908-bp env gene fragment from one of the two baboons. Phylo-genetic analyses revealed that this baboon was infected with an SIVAGM strain of the vervet subtype. These results provide the first direct evidence for simian-to-simian cross-species transmission of SIV in the wild

    The Malagarasi River Does Not Form an Absolute Barrier to Chimpanzee Movement in Western Tanzania

    Get PDF
    The Malagarasi River has long been thought to be a barrier to chimpanzee movements in western Tanzania. This potential geographic boundary could affect chimpanzee ranging behavior, population connectivity and pathogen transmission, and thus has implications for conservation strategies and government policy. Indeed, based on mitochondrial DNA sequence comparisons it was recently argued that chimpanzees from communities to the north and to the south of the Malagarasi are surprisingly distantly related, suggesting that the river prevents gene flow. To investigate this, we conducted a survey along the Malagarasi River. We found a ford comprised of rocks that researchers could cross on foot. On a trail leading to this ford, we collected 13 fresh fecal samples containing chimpanzee DNA, two of which tested positive for SIVcpz. We also found chimpanzee feces within the riverbed. Taken together, this evidence suggests that the Malagarasi River is not an absolute barrier to chimpanzee movements and communities from the areas to the north and south should be considered a single population. These results have important consequences for our understanding of gene flow, disease dynamics and conservation management

    Interferon-inducible gene 202b controls CD8+ T cell-mediated suppression in anti-DNA Ig peptide-treated (NZB × NZW) F1 lupus mice

    Get PDF
    Administration of an artificial peptide (pConsensus) based on anti-DNA IgG sequences that contain major histocompatibility complex class I and class II T-cell determinants, induces immune tolerance in NZB/NZW F1 female (BWF1) mice. To understand the molecular basis of CD8+ Ti-mediated suppression, we previously performed microarray analysis to identify genes that were differentially expressed following tolerance induction with pCons. CD8+ T cells from mice tolerized with pCons showed more than two-fold increase in Ifi202b mRNA, an interferon inducible gene, versus cells from untolerized mice. Ifi202b expression increased through weeks 1–4 after tolerization and then decreased, reapproaching baseline levels at 6 weeks. In vitro polyclonal activation of tolerized CD8+ T cells significantly increased Ifi202b mRNA expression. Importantly, silencing of Ifi202b abrogated the suppressive capacity of CD8+ Ti cells. This was associated with decreased expression of Foxp3, and decreased gene and protein expression of transforming growth factor (TGF)β and interleukin-2 (IL-2), but not of interferon (IFN)-γ, IL-10, or IL-17. Silencing of another IFN-induced gene upregulated in tolerized CD8+ T cells, IFNAR1, had no effect on the ability of CD8+ T cells to suppress autoantibody production. Our findings indicate a potential role for Ifi202b in the suppressive capacity of peptide-induced regulatory CD8+ Ti cells through effects on the expression of Foxp3 and the synthesis of TGFβ

    Quantitative analysis of DNA levels in maternal plasma in normal and Down syndrome pregnancies

    Get PDF
    BACKGROUND: We investigated fetal and total DNA levels in maternal plasma in patients bearing fetuses affected with Down syndrome in comparison to controls carrying fetuses with normal karyotype. METHODS: DNA levels in maternal plasma were measured using real-time quantitative PCR using SRY and β-globin genes as markers. Twenty-one pregnant women with a singleton fetus at a gestational age ranging from 15 to 19 weeks recruited before amniocentesis (carried out for reasons including material serum screening and advanced material age), and 16 pregnant women bearing fetuses affected with Down syndrome between 17 to 22 weeks of gestation were involved in the study. RESULTS: The specificity of the system reaches 100% (no Y signal was detected in 14 women pregnant with female fetuses) and the sensitivity 91.7% (SRY amplification in 22 of 24 examined samples). The median fetal DNA levels in women carrying Down syndrome (n=11) and the controls (n=13) were 23.3 (range 0–58.5) genome-equivalents/ml and 24.5 (range 0–47.5) genome-equivalents/ml of maternal plasma, respectively (P = 0.62). The total median DNA levels in pregnancies with Down syndrome and the controls were 10165 (range 615–65000) genome-equivalents/ml and 7330 (range 1300–36750) genome-equivalents/ml, respectively (P = 0.32). The fetal DNA proportion in maternal plasma was 0%-6 % (mean 0.8%) in women carrying Down syndrome and 0%-2.6 % (mean 0.7 %) in the controls, respectively (P=0.86). CONCLUSIONS: Our study revealed no difference in fetal DNA levels and fetal DNA: maternal DNA ratio between the patients carrying Down syndrome fetuses and the controls
    • …
    corecore