3,561 research outputs found
Microlensing planet detection via geosynchronous and low Earth orbit satellites
Planet detection through microlensing is usually limited by a well-known
degeneracy in the Einstein timescale , which prevents mass and distance of
the lens to be univocally determined. It has been shown that a satellite in
geosynchronous orbit could provide masses and distances for most standard
planetary events ( days) via a microlens parallax measurement.
This paper extends the analysis to shorter Einstein timescales,
day, when dealing with the case of Jupiter-mass lenses. We then study the
capabilities of a low Earth orbit satellite on even shorter timescales, days. A Fisher matrix analysis is employed to predict how the
1- error on parallax depends on and the peak magnification of the
microlensing event. It is shown that a geosynchronous satellite could detect
parallaxes for Jupiter-mass free floaters and discover planetary systems around
very low-mass brown dwarfs. Moreover, a low Earth orbit satellite could lead to
the discovery of Earth-mass free-floating planets. Limitations to these results
can be the strong requirements on the photometry, the effects of blending, and
in the case of the low orbit, the Earth's umbra.Comment: 5 pages, 3 figures. Minor language edits. Accepted for publication in
Astronomy & Astrophysic
High-contrast imaging at small separation: impact of the optical configuration of two deformable mirrors on dark holes
The direct detection and characterization of exoplanets will be a major
scientific driver over the next decade, involving the development of very large
telescopes and requires high-contrast imaging close to the optical axis. Some
complex techniques have been developed to improve the performance at small
separations (coronagraphy, wavefront shaping, etc). In this paper, we study
some of the fundamental limitations of high contrast at the instrument design
level, for cases that use a combination of a coronagraph and two deformable
mirrors for wavefront shaping. In particular, we focus on small-separation
point-source imaging (around 1 /D). First, we analytically or
semi-analytically analysing the impact of several instrument design parameters:
actuator number, deformable mirror locations and optic aberrations (level and
frequency distribution). Second, we develop in-depth Monte Carlo simulation to
compare the performance of dark hole correction using a generic test-bed model
to test the Fresnel propagation of multiple randomly generated optics static
phase errors. We demonstrate that imaging at small separations requires large
setup and small dark hole size. The performance is sensitive to the optic
aberration amount and spatial frequencies distribution but shows a weak
dependence on actuator number or setup architecture when the dark hole is
sufficiently small (from 1 to 5 /D).Comment: 13 pages, 18 figure
Alien Registration- De Beaulieu, Katherine F. (Portland, Cumberland County)
https://digitalmaine.com/alien_docs/24493/thumbnail.jp
A simple method to account for topography in the radiometric correction of radar imagery
This article presents a method that allows to study and correct the radiometric distortions caused by topography in SAR images. The method is easy to implement, and requires neither sophisticated software nor code-level programming. It also considers the case of a flat surface having an elevation different from the one for which calibration parameters were derived. An ortho-image of the slant range distance is used with a digital elevation model to generate images of the local incident angle along the range and azimuth directions. The method compensates for variations in the terrain area of each pixel and for the angular dependence of backscatter, allowing the choice of either an empirical or semi- empirical scattering model. The method is applied to high-resolution C-SAR subsets of an agricultural area in the Central Cordillera of Costa Rica. The removal of topographic features appears excellent for local incident angles up to 80 degrees, but small-scale structures have pronounced effects on the radar return for higher local incident angles and are not adequately corrected
Tracking the phase-transition energy in disassembly of hot nuclei
In efforts to determine phase transitions in the disintegration of highly
excited heavy nuclei, a popular practice is to parametrise the yields of
isotopes as a function of temperature in the form
, where 's are the measured yields
and and are fitted to the yields. Here would be
interpreted as the phase transition temperature. For finite systems such as
those obtained in nuclear collisions, this parametrisation is only approximate
and hence allows for extraction of in more than one way. In this work we
look in detail at how values of differ, depending on methods of
extraction. It should be mentioned that for finite systems, this approximate
parametrisation works not only at the critical point, but also for first order
phase transitions (at least in some models). Thus the approximate fit is no
guarantee that one is seeing a critical phenomenon. A different but more
conventional search for the nuclear phase transition would look for a maximum
in the specific heat as a function of temperature . In this case is
interpreted as the phase transition temperature. Ideally and would
coincide. We invesigate this possibility, both in theory and from the ISiS
data, performing both canonical () and microcanonical ()
calculations. Although more than one value of can be extracted from the
approximate parmetrisation, the work here points to the best value from among
the choices. Several interesting results, seen in theoretical calculations, are
borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table
- …