3,561 research outputs found

    Microlensing planet detection via geosynchronous and low Earth orbit satellites

    Full text link
    Planet detection through microlensing is usually limited by a well-known degeneracy in the Einstein timescale tEt_E, which prevents mass and distance of the lens to be univocally determined. It has been shown that a satellite in geosynchronous orbit could provide masses and distances for most standard planetary events (tE20t_E \approx 20 days) via a microlens parallax measurement. This paper extends the analysis to shorter Einstein timescales, tE1t_E \approx 1 day, when dealing with the case of Jupiter-mass lenses. We then study the capabilities of a low Earth orbit satellite on even shorter timescales, tE0.1t_E \approx 0.1 days. A Fisher matrix analysis is employed to predict how the 1-σ\sigma error on parallax depends on tEt_E and the peak magnification of the microlensing event. It is shown that a geosynchronous satellite could detect parallaxes for Jupiter-mass free floaters and discover planetary systems around very low-mass brown dwarfs. Moreover, a low Earth orbit satellite could lead to the discovery of Earth-mass free-floating planets. Limitations to these results can be the strong requirements on the photometry, the effects of blending, and in the case of the low orbit, the Earth's umbra.Comment: 5 pages, 3 figures. Minor language edits. Accepted for publication in Astronomy & Astrophysic

    High-contrast imaging at small separation: impact of the optical configuration of two deformable mirrors on dark holes

    Full text link
    The direct detection and characterization of exoplanets will be a major scientific driver over the next decade, involving the development of very large telescopes and requires high-contrast imaging close to the optical axis. Some complex techniques have been developed to improve the performance at small separations (coronagraphy, wavefront shaping, etc). In this paper, we study some of the fundamental limitations of high contrast at the instrument design level, for cases that use a combination of a coronagraph and two deformable mirrors for wavefront shaping. In particular, we focus on small-separation point-source imaging (around 1 λ\lambda/D). First, we analytically or semi-analytically analysing the impact of several instrument design parameters: actuator number, deformable mirror locations and optic aberrations (level and frequency distribution). Second, we develop in-depth Monte Carlo simulation to compare the performance of dark hole correction using a generic test-bed model to test the Fresnel propagation of multiple randomly generated optics static phase errors. We demonstrate that imaging at small separations requires large setup and small dark hole size. The performance is sensitive to the optic aberration amount and spatial frequencies distribution but shows a weak dependence on actuator number or setup architecture when the dark hole is sufficiently small (from 1 to \lesssim 5 λ\lambda/D).Comment: 13 pages, 18 figure

    Alien Registration- De Beaulieu, Katherine F. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/24493/thumbnail.jp

    A simple method to account for topography in the radiometric correction of radar imagery

    Get PDF
    This article presents a method that allows to study and correct the radiometric distortions caused by topography in SAR images. The method is easy to implement, and requires neither sophisticated software nor code-level programming. It also considers the case of a flat surface having an elevation different from the one for which calibration parameters were derived. An ortho-image of the slant range distance is used with a digital elevation model to generate images of the local incident angle along the range and azimuth directions. The method compensates for variations in the terrain area of each pixel and for the angular dependence of backscatter, allowing the choice of either an empirical or semi- empirical scattering model. The method is applied to high-resolution C-SAR subsets of an agricultural area in the Central Cordillera of Costa Rica. The removal of topographic features appears excellent for local incident angles up to 80 degrees, but small-scale structures have pronounced effects on the radar return for higher local incident angles and are not adequately corrected

    Tracking the phase-transition energy in disassembly of hot nuclei

    Full text link
    In efforts to determine phase transitions in the disintegration of highly excited heavy nuclei, a popular practice is to parametrise the yields of isotopes as a function of temperature in the form Y(z)=zτf(zσ(TT0))Y(z)=z^{-\tau}f(z^{\sigma}(T-T_0)), where Y(z)Y(z)'s are the measured yields and τ,σ\tau, \sigma and T0T_0 are fitted to the yields. Here T0T_0 would be interpreted as the phase transition temperature. For finite systems such as those obtained in nuclear collisions, this parametrisation is only approximate and hence allows for extraction of T0T_0 in more than one way. In this work we look in detail at how values of T0T_0 differ, depending on methods of extraction. It should be mentioned that for finite systems, this approximate parametrisation works not only at the critical point, but also for first order phase transitions (at least in some models). Thus the approximate fit is no guarantee that one is seeing a critical phenomenon. A different but more conventional search for the nuclear phase transition would look for a maximum in the specific heat as a function of temperature T2T_2. In this case T2T_2 is interpreted as the phase transition temperature. Ideally T0T_0 and T2T_2 would coincide. We invesigate this possibility, both in theory and from the ISiS data, performing both canonical (TT) and microcanonical (e=E/Ae=E^*/A) calculations. Although more than one value of T0T_0 can be extracted from the approximate parmetrisation, the work here points to the best value from among the choices. Several interesting results, seen in theoretical calculations, are borne out in experiment.Comment: Revtex, 10 pages including 8 figures and 2 table
    corecore