2,244 research outputs found
Consequences of temperature and temperature variability on swimming activity, group structure, and predation of endangered delta smelt
The effects of water temperature on individual and group movement behaviour in prey fish can affect ecological interactions such as competition and predation, but how variability in temperature influence fish behaviour is less understood. Of particular concern is how increased warming in tidally fluctuating estuaries may impact the native and endangered delta smelt (Hypomesus transpacificus, Osmeridae). To help address this issue, we tested the effects of increased water temperature (fluctuating [17–21°C] and warm [21°C] acclimated treatments) on juvenile delta smelt individual and group behaviour, response to chemical alarm and predator cues, as well as capacity to evade predation. In addition, predation of delta smelt was tested in the presence of a dominant invasive competitor, Mississippi silversides (Menidia beryllina, Atherinopsidae), as well as comparative predation mortality on Mississippi silversides when isolated. After 7 days of increased temperature treatments, delta smelt in the warm treatment increased swimming velocity, decreased turning angle, and altered group structure with larger inter-individual distances compared to fish in the control (17°C) and fluctuating temperature treatments. Following conspecific and predator chemical alarm cues, delta smelt showed anti-predator responses. Control and fluctuating treatment fish responded to conspecific cues with increased swimming speeds, decreased inter-individual distances and near-neighbour distances, and, after 15 min, fish recovered back to baseline behaviours. In contrast, fish in the warm treatment had not recovered after 15 min, and swimming speeds were maintained at roughly 25 cm/s, close to maximum capabilities. Fish in control and fluctuating treatments showed minimal responses to predator cues, whereas delta smelt exposed to warm conditions significantly increased swimming speeds and decreased turning angle. Predation of delta smelt by largemouth bass (Micropterus salmoides, Centrarchidae) was greatest under the warm treatment, correlating with altered behaviours of delta smelt; however, predation of Mississippi silversides was greater than delta smelt, independent of temperature. This study provides novel insight into the group behaviour of delta smelt, their response to predation, and how prolonged exposure to elevated temperature may induce negative individual and group behaviours causing alterations in predator–prey dynamics. This work highlights the importance of testing ecologically realistic temperature fluctuations in experiments as delta smelt had significantly altered responses to elevated temperature, dependent on variability of warming
A measurement of the 4He(g,n) reaction from 23 < Eg < 70 MeV
A comprehensive set of 4He(g,n) absolute cross-section measurements has been
performed at MAX-lab in Lund, Sweden. Tagged photons from 23 < Eg < 70 MeV were
directed toward a liquid 4He target, and neutrons were identified using
pulse-shape discrimination and the Time-of-flight Technique in two
liquid-scintillator detector arrays. Seven-point angular distributions have
been measured for fourteen photon energies. The results have been subjected to
complementary Transition-coefficient and Legendre-coefficient analyses. The
results are also compared to experimental data measured at comparable photon
energies as well as Recoil-Corrected Continuum Shell Model, Resonating Group
Method, and Effective Interaction Hyperspherical-Harmonic Expansion
calculations. For photon energies below 29 MeV, the angle-integrated data are
significantly larger than the values recommended by Calarco, Berman, and
Donnelly in 1983.Comment: 16 pages, 14 figures, some more revisions, submitted to Physical
Review
How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
Safety surveillance and the estimation of risk in select populations: Flexible methods to control for confounding while targeting marginal comparisons via standardization
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/1/sim8410_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/152565/2/sim8410.pd
Experimental evidence that livestock grazing intensity affects cyclic vole population regulation processes
Peer reviewedPublisher PD
Laminin-332 alters connexin profile, dye coupling and intercellular Ca(2+ )waves in ciliated tracheal epithelial cells
BACKGROUND: Tracheal epithelial cells are anchored to a dynamic basement membrane that contains a variety of extracellular matrix proteins including collagens and laminins. During development, wound repair and disease of the airway epithelium, significant changes in extracellular matrix proteins may directly affect cell migration, differentiation and events mediated by intercellular communication. We hypothesized that alterations in cell matrix, specifically type I collagen and laminin α3β3γ2 (LM-332) proteins within the matrix, directly affect intercellular communication in ciliated rabbit tracheal epithelial cells (RTEC). METHODS: Functional coupling of RTEC was monitored by microinjection of the negatively charged fluorescent dyes, Lucifer Yellow and Alexa 350, into ciliated RTEC grown on either a LM-332/collagen or collagen matrix. Coupling of physiologically significant molecules was evaluated by the mechanism and extent of propagated intercellular Ca(2+ )waves. Expression of connexin (Cx) mRNA and proteins were assayed by reverse transcriptase – polymerase chain reaction and immunocytochemistry, respectively. RESULTS: When compared to RTEC grown on collagen alone, RTEC grown on LM-332/collagen displayed a significant increase in dye transfer. Although mechanical stimulation of RTEC grown on either LM-332/collagen or collagen alone resulted in intercellular Ca(2+ )waves, the mechanism of transfer was dependent on matrix: RTEC grown on LM-332/collagen propagated Ca(2+)waves via extracellular purinergic signaling whereas RTEC grown on collagen used gap junctions. Comparison of RTEC grown on collagen or LM-332/collagen matrices revealed a reorganization of Cx26, Cx43 and Cx46 proteins. CONCLUSION: Alterations in airway basement membrane proteins such as LM-332 can induce connexin reorganizations and result in altered cellular communication mechanisms that could contribute to airway tissue function
The determinants of vulnerability to currency crises: country-specific factors versus regional factors
We investigate the determinants of exchange market pressures (EMP) for some new EU member states at both the national and regional levels, where macroeconomic and financial variables are considered as potential sources. The regional common factors are extracted from these variables by using dynamic factor analysis. The linear empirical analysis, in general, highlights the importance of country-specific factors to defend themselves against vulnerability in their external sectors. Yet, given a significant impact of the common component in credit on EMP, a contagion effect is apparent through the conduit of credit market integration across these countries under investigation
Worker well-being and the importance of work: bridging the gap
The importance of worker well-being is widely-embraced both in theory and policy, but there are numerous perspectives on what it is, how to measure it, whether it needs improving and if so, how to improve it. We argue that a more complete approach to worker well-being needs to consider workers as full citizens who derive and experience both public and private benefits and costs from working. A broad framework on the meanings of work is used to expand the boundaries of worker well-being to reflect the broad importance of work in human life
Validation and optimization of AFP-based biomarker panels for early HCC detection in Latin America and Europe
Background: HCC is a major cause of cancer death worldwide. Serum biomarkers such as alpha-fetoprotein (AFP), protein induced by vitamin K absence-II, and the Gender, Age, AFP-L3, AFP, Des-gamma-carboxy prothrombin (GALAD) score have been recommended for HCC surveillance. However, inconsistent recommendations in international guidelines limit their clinical utility.Methods: In this multicenter study, over 2000 patient samples were collected in 6 Latin American and 2 European countries. The performance of the GALAD score was validated in cirrhotic cases, and optimized versions were tested for early-stage HCC and prediagnostic HCC detection.Results: The GALAD score could distinguish between HCC and cirrhosis in Latin American patients with an AUC of 0.76, sensitivity of 70%, and specificity of 83% at the conventional cutoff value of −0.63. In a European cohort, GALAD had an AUC of 0.69, sensitivity of 66%, and specificity of 72%. Optimizing the score in the 2 large multicenter cohorts revealed that AFP-L3 contributed minimally to early-stage HCC detection. Thus, we developed a modified GALAD score without AFP-L3, the ASAP (age, sex, AFP, and protein induced by vitamin K absence-II), which showed promise for early-stage HCC detection upon validation. The ASAP score also identified patients with cirrhosis at high risk for advanced-stage HCC up to 15 months before diagnosis (p < 0.0001) and differentiated HCC from hemangiomas, with a specificity of 100% at 71% sensitivity.Conclusion: Our comprehensive analysis of large sample cohorts validates the GALAD score’s utility in Latin American, Spanish, and Dutch patients for early-stage HCC detection. The optimized GALAD without AFP-L3, the ASAP score, is a good alternative and shows greater promise for HCC prediction
How Chaotic is the Stadium Billiard? A Semiclassical Analysis
The impression gained from the literature published to date is that the
spectrum of the stadium billiard can be adequately described, semiclassically,
by the Gutzwiller periodic orbit trace formula together with a modified
treatment of the marginally stable family of bouncing ball orbits. I show that
this belief is erroneous. The Gutzwiller trace formula is not applicable for
the phase space dynamics near the bouncing ball orbits. Unstable periodic
orbits close to the marginally stable family in phase space cannot be treated
as isolated stationary phase points when approximating the trace of the Green
function. Semiclassical contributions to the trace show an - dependent
transition from hard chaos to integrable behavior for trajectories approaching
the bouncing ball orbits. A whole region in phase space surrounding the
marginal stable family acts, semiclassically, like a stable island with
boundaries being explicitly -dependent. The localized bouncing ball
states found in the billiard derive from this semiclassically stable island.
The bouncing ball orbits themselves, however, do not contribute to individual
eigenvalues in the spectrum. An EBK-like quantization of the regular bouncing
ball eigenstates in the stadium can be derived. The stadium billiard is thus an
ideal model for studying the influence of almost regular dynamics near
marginally stable boundaries on quantum mechanics.Comment: 27 pages, 6 figures, submitted to J. Phys.
- …