19 research outputs found

    Severe, eosinophilic asthma in primary care in Canada: a longitudinal study of the clinical burden and economic impact based on linked electronic medical record data

    No full text
    Abstract Background Stratification of patients with severe asthma by blood eosinophil counts predicts responders to anti-interleukin (IL)-5 (mepolizumab and reslizumab) and anti-IL-5 receptor α (benralizumab) therapies. This study characterized patients with severe asthma who could qualify for these biologics in a primary care setting. Methods We retrospectively selected patients from July 1, 2010, to June 30, 2014, using a linked electronic medical records (EMR) database (IMS Evidence 360 EMR Canada) for > 950,000 patients in primary care in Ontario, Canada. Patients aged ≥ 12 years with ≥ 2 documented asthma diagnoses were identified as having severe asthma based on prescriptions for high-dosage inhaled corticosteroids (ICS) plus either a leukotriene receptor antagonist, long-acting β2-agonist (LABA), or theophylline filled on the same day. Patients’ asthma was considered severe also if they received a prescription for ICS with oral corticosteroids (OCS) or an additional prescription for omalizumab. Patient characteristics, asthma-related medications, and blood eosinophil counts were captured using observed care patterns for the year prior to ICS/LABA and/or OCS prescription. Health care resource use (HCRU) and costs were captured throughout the 1-year follow-up period. Results We identified 212 patients who met the criteria for severe asthma. These patients required an average of 6.5 physician visits during the 1-year follow-up period (95% confidence interval 5.7–7.3), and 20 (9%) were referred to respiratory specialists. Overall, 56 patients (26%) with severe asthma had complete blood counts, of whom 23 (41%) had blood eosinophil counts ≥ 300 cells/μL and might be considered for anti-eosinophil therapies. Patients with severe asthma and blood eosinophil counts ≥ 300 cells/μL had more respiratory specialist referrals (17% vs. 12%) than patients with blood eosinophils < 300 cells/μL. Conclusions Our data suggest that during 2010–2014, Ontario primary care patients with severe asthma and high blood eosinophil counts had greater HRCU than those with lower counts. Approximately 41% of patients with severe asthma could qualify for anti-eosinophil drugs based on blood eosinophil counts. However, the eosinophilic status of most patients was unknown. It is appropriate to increase awareness of the use of blood eosinophil counts to identify patients who could be considered for anti-eosinophil therapies

    Amphibian phylogeography: a model for understanding historical aspects of species distributions

    No full text
    Phylogeographic analysis has become a major tool for investigating historical aspects of biogeography and population genetic structure. Anuran amphibians are particularly informative subjects for phylogeographic research on account of their global distribution, high degree of population genetic structure and ease of sampling. Studies on all the world's inhabited continents have demonstrated the nature and locations of refugia, including the Gulf Coast in North America and the Mediterranean peninsulas in Europe during the Pleistocene glaciations; the importance of vicariance events such as the uplift of the Andes in shaping modern distributions; and colonization routes in temperate zones during postglacial climatic amelioration. Features identified as important to amphibian biogeography, notably mountain ranges, large rivers such as the Amazon and climatic fluctuations, are common to many other taxa. New analytical methods based on coalescent, Bayesian and likelihood approaches permit more rigorous hypothesis testing than has hitherto been possible and offer the prospect of even more detailed insights into species and population history in future work

    Consistently dated Atlantic sediment cores over the last 40 thousand years

    Get PDF
    Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difculty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the frst set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies
    corecore