20 research outputs found

    Intérêt d'une Source d'Energie Electrique Hybride pour véhicule électrique urbain dimensionnement et tests de cyclage

    Get PDF
    Actuellement, la principale source d énergie embarquée dans les véhicules électriques est composée de batteries Li-ion. Cette thèse fait partie des thématiques communes de travail que mène L ESTACA en collaboration avec le L2EP. L objectif ce projet est d étudier l apport d une source hybride composée de batteries Li-ion et des supercondensateurs, sur les performances d un véhicule électrique urbain.Dans un premier temps, une stratégie de gestion d energie basée sur l approche des règles déterministes a été appliquée pour montrer l intérêt de l association des différentes technologies de batterie Li-ion (haute puissance, haute énergie) avec le supercondensateur en fonction de l autonomie voulue. Cette étude nous a permis de proposer une solution optimale (poids, volume, coût..) composée d une batterie énergétique et un supercondensateur.Dans la deuxième partie, on a suivie l évolution du vieillissement des deux de deux batteries de type haute puissance et hautes énergie dans, respectivement, les configurations mono-source et hybride. Pour réaliser cette étude, un banc de tests, destiné au cyclage et la caractérisation des systèmes de stockage, a été utilisé. Les résultats obtenus, offriront la possibilité de se prononcer sur le type de batteries Li-ion qui pourrait être le plus intéressant pour l alimentation des véhicules électriquesCurrently, the main embedded storage system supplying the electric vehicles is composed of Li-ion batteries. This thesis is one of the common themes of work that ESTACA leads in collaboration with L2EP. The objective of this work is to study the interest of a hybrid source composed of Li-ion batteries and supercapacitors to supply an urban electric.Firstly, an energy management strategy based on deterministic rules is developed to control the power between the battery and supercapacitor. To demonstrate the combination utility, different Li-ion battery technologies (Li-ion high power, high-Li-ion energy) are used on the sizing step. Through this study, we could propose an optimal solution (masses, volumes, costs...) consisting of battery and supercapacitor. In the second part, we have followed the evolution of capacity and the internal resistance losses of high power and high energy batteries type in, respectively, single-source and hybrid configurations. For this study, a test bench, developed for cycling and characterization of storage systems, was used. The results obtained provide the opportunity to choose Li-ion battery technology that could be the most interesting for the supply of electric vehiclesVILLENEUVE D'ASCQ-ECLI (590092307) / SudocSudocFranceF

    Phase I trial of volasertib, a Polo-like kinase inhibitor, plus platinum agents in solid tumors: safety, pharmacokinetics and activity

    Get PDF
    Summary: Background This trial evaluated the maximum tolerated dose (MTD), safety, pharmacokinetics, and activity of volasertib, a selective Polo-like kinase 1 inhibitor that induces mitotic arrest and apoptosis, combined with cisplatin or carboplatin in patients with advanced/metastatic solid tumors (NCT00969761; 1230.6). Methods Sequential patient cohorts (3+3 dose-escalation design) received a single infusion of volasertib (100-350 mg) with cisplatin (60-100 mg/m2) or carboplatin (area under the concentration versus time curve [AUC]4-AUC6) on day 1 every 3 weeks for up to six cycles. Sixty-one patients received volasertib/cisplatin (n=30) or volasertib/carboplatin (n=31) for a median of 3.5 (range, 1-6) and 2.0 (range, 1-6) treatment cycles, respectively. Results The most common cycle 1 dose-limiting toxicities (DLTs) were thrombocytopenia, neutropenia and fatigue. MTDs (based on cycle 1 DLTs) were determined to be volasertib 300 mg plus cisplatin 100 mg/m2 and volasertib 300 mg plus carboplatin AUC6. Co-administration did not affect the pharmacokinetics of each drug. Partial responses were observed in two patients in each arm. Stable disease was achieved in 11 and six patients treated with volasertib/cisplatin and volasertib/carboplatin, respectively. Conclusions Volasertib plus cisplatin or carboplatin at full single-agent doses was generally manageable and demonstrated activity in heavily pretreated patients with advanced solid tumors.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Study of the Ageing Process of a Supercapacitor Module Using Direct Method of Characterization

    No full text
    International audienc

    Series Architecture for the Reduction of the DC-DC Converter in a Hybrid Energy Storage System for Electric Vehicles

    No full text
    A Hybrid Energy Storage System (HESS) uses DC-DC converters to couple its energy sources. However, this device represents a “dead weight” in the system and must be reduced to a minimum in order to maximize the HESS’ performance. This work proposes a new coupling architecture to reduce the converter’s volume and mass. Not yet addressed in the literature, this architecture is based on a series coupling of the sources. In this case, a DC-DC converter is used to control the current difference between the two sources. If this difference is zero, so is the power processed by the converter. By reducing the power processed by the converter, its mass and volume can be reduced. Simulation and experimental tests were carried out to validate the architecture concept. For the latter, power supplies were used to emulate the batteries and the load, and a 2 kg, 3.3 kW evaluation board served as the DC-DC converter. The results show that, compared to a conventional solution that is usually adopted in the literature, with the series architecture, it is possible to reduce the converter sizing power by almost 3.7

    Combined Optimal Sizing and Control of Li-Ion Battery/Supercapacitor Embedded Power Supply Using Hybrid Particle Swarm–Nelder–Mead Algorithm

    No full text
    This paper examines and optimizes parameters that affect the sizing and control of a hybrid embedded power supply composed of Li-ion batteries and supercapacitors in electric vehicle applications. High demands including power and energy density, low charge/discharge power stress on the battery (long lifetime), lightweight design, and relatively modest cost at the same time cannot be provided solely by batteries or supercapacitors. For this reason, we propose the use of a Li-ion battery/supercapacitor hybrid embedded power supply for an urban electric vehicle. The sizing process of this system including the optimization of the power sharing is done thanks to a developed hybrid Particle Swarm-Nelder-Mead algorithm involving multi-objective optimization. This approach also allows us to optimize the proposed energy management strategies based on frequency rule-based control and different ways of supercapacitors energy regulation. Obtained results show that the hybrid embedded power supply with the proposed control strategies is able to offer the best performances for the chosen electric vehicle in terms of weight, initial cost, and battery lifetime

    Estimating architecture-based metabolic scaling exponents of tropical trees using terrestrial LiDAR and 3D modelling

    No full text
    The geometric structure of tree branches has been hypothesized to relate to the mechanical safety and efficiency of resource transport within a tree. As such, the topology of tree architecture links physical properties within a tree and influences the interaction of the tree with its environment. Prior work suggests the existence of general principles which govern tree architectural patterns across of species and bio-geographical regions. In particular, West, Brown and Enquist (WBE, 1997) and Savage et al. (2010) derive scaling exponents (branch radius scaling ratio α and branch length scaling ratio β) from symmetrical branch parameters and from these, an architecture-based metabolic scaling rate (θ) for the whole tree. With this key scaling exponent, the metabolism (e.g., number of leaves, respiration, etc.) of a whole tree, or potentially a group of trees, can be estimated allometrically. Until now, branch parameter values have been measured manually; either from standing live trees or from harvested trees. Such measurements are time consuming, labour intensive and susceptible to subjective errors. Remote sensing, and specifically terrestrial LiDAR (TLS), is a promising alternative, being objective, scalable, and able to collect large quantities of data without destructive sampling. In this paper, we calculated branch length, branch radius, and architecture-based metabolic rate scaling exponents by first using TLS to scan standing trees and then fitting quantitative structure models (TreeQSM) models to 3D point clouds from nine trees in a tropical forest in Guyana. To validate these TLS-derived scaling exponents, we compared them with exponents calculated from direct field measurements of all branches >10 cm at four scales: branch-level, cumulative branch order, tree-level and plot-level. We found a bias on the estimations of α and β exponents due to a bias on the reconstruction of the branching architecture. Although TreeQSM scaling exponents predicted similar θ as the manually measured exponents, this was due to the combination of α and β scaling exponents which were both biased. Also, the manually measured α and β scaling exponents diverged from the WBE's theoretical exponents suggesting that trees in tropical environments might not follow the predictions for the symmetrical branching geometry proposed by WBE. Our study provides an alternative method to estimate scaling exponents at both the branch- and tree-level in tropical forest trees without the need for destructive sampling. Although this approach is based on a limited sample of nine trees in Guyana, it can be implemented for large-scale plant scaling assessments. These new data might improve our current understanding of metabolic scaling without harvesting tree

    Quantifying branch architecture of tropical trees using terrestrial LiDAR and 3D modelling

    Get PDF
    Tree architecture is the three-dimensional arrangement of above ground parts of a tree. Ecologists hypothesize that the topology of tree branches represents optimized adaptations to tree’s environment. Thus, an accurate description of tree architecture leads to a better understanding of how form is driven by function. Terrestrial laser scanning (TLS) has demonstrated its potential to characterize woody tree structure. However, most current TLS methods do not describe tree architecture. Here, we examined nine trees from a Guyanese tropical rainforest to evaluate the utility of TLS for measuring tree architecture. First, we scanned the trees and extracted individual tree point clouds. TreeQSM was used to reconstruct woody structure through 3D quantitative structure models (QSMs). From these QSMs, we calculated: (1) length and diameter of branches > 10 cm diameter, (2) branching order and (3) tree volume. To validate our method, we destructively harvested the trees and manually measured all branches over 10 cm (279). TreeQSM found and reconstructed 95% of the branches thicker than 30 cm. Comparing field and QSM data, QSM overestimated branch lengths thicker than 50 cm by 1% and underestimated diameter of branches between 20 and 60 cm by 8%. TreeQSM assigned the correct branching order in 99% of all cases and reconstructed 87% of branch lengths and 97% of tree volume. Although these results are based on nine trees, they validate a method that is an important step forward towards using tree architectural traits based on TLS and open up new possibilities to use QSMs for tree architecture

    A phase I, dose-escalation study of the novel Polo-like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours.

    No full text
    Volasertib (BI 6727) is a potent and selective cell-cycle kinase inhibitor that induces mitotic arrest and apoptosis by targeting Polo-like kinase (Plk). This phase I dose-escalation study evaluated the maximum tolerated dose (MTD) of volasertib, safety and efficacy, and pharmacokinetic (PK) parameters.Clinical Trial, Phase IJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore