119 research outputs found

    Antioxidant Activities and Chemical Constituents of Extracts from Cordyline fruticosa (L.) A. Chev. (Agavaceae) and Eriobotrya japonica (Thunb) Lindl, (Rosaceae)

    Get PDF
    Background and Objective: Cordyline fruticosa (Agavaceae) and Eriobotrya japonica (Rosaceae) are two medicinal plants used for the treatment of various diseases such as infections of mammary glands, sore throat and neck pain for the first plant, diabetes, cough, ulcers, protection against oxidative stress and cognitive deficits for the latter. The present study was designed to evaluate the antioxidant activity of the different extracts of these two plants as well as to isolate and identify their chemical constituents. Materials and Methods: The plant extract was prepared by maceration in methanol, compounds were isolated from EtOAc and n-BuOH extracts of the two plants using column chromatography and their structures were determined by means of NMR and MS analysis as well as in comparison with published data. Antioxidant tests (DPPH, ferric reduction antioxidant power and anti-hemolytic) were performed over the MeOH, EtOAc and n-BuOH extracts of the plants. Results: The antioxidant-guided phytochemical investigation of the MeOH extracts of the two plants led to the isolation of twelve compounds identified as: Farrerol 1, quercetin helichrysoside 2, apigenin 8-C-β-D-glucopyranoside 3, isoquercitrin 4 and rutin 5 from C. fruticosa, β-sitosterol 6, catechin 7, oleanolic acid 8, lyoniresinol 9, cinchonain IIb 10, lyoniresinol 2-a-O-β-D-xylopyranoside 11 and β-sitosterol-3-O-β-D-glucopyranoside 12 from E. japonica. Amongst the isolated compounds, the most important antioxidant ones were identified as helichrysoside and rutin from C. fruticosa, catechin, cinchonain IIb, lyoniresinol 2-a-O-β-D-xylopyranoside from E. japonica with EC50 of 8.73, 9.91, 4.11, 3.14 and 10.61 μg mL–1, respectively. Conclusion: Based on the obtained results, it can be concluded that the high ability to scavenge free radicals, reducing power of Fe3+ and hemolysis activity exerted by extracts of C. fruticosa and E. japonica were due to their high content of phenolic compounds, thus the structure-activity relationships of the isolated flavonoids were discussed. The results of this study suggest that the extracts from these two plants could serve as potential source of antioxidant compound

    Enhanced anticancer activity of Hymenocardia acida stem bark extract loaded into PLGA nanoparticles

    Get PDF
    Hymenocardia acida (H. acida) is an African well-known shrub recognized for numerous medicinal properties, including its cancer management potential. The advent of nanotechnology in delivering bioactive medicinal plant extract with poor solubility has improved the drug delivery system, for a better therapeutic value of several drugs from natural origins. This study aimed to evaluate the anticancer properties of H. acida using human lung (H460), breast (MCF-7), and colon (HCT 116) cancer cell lines as well as the production, characterization, and cytotoxicity study of H. acida loaded into PLGA nanoparticles. Benchtop models of Saccharomyces cerevisiae and Raniceps ranninus were used for preliminary toxicity evaluation. Notable cytotoxic activity in benchtop models and human cancer cell lines was observed for H. acida crude extract. The PLGA nanoparticles loading H. acida had a size of about 200 nm and an association efficiency of above 60%, making them suitable to be delivered by different routes. The outcomes from this research showed that H. acida has anticancer activity as claimed from an ethnomedical point of view; however, a loss in activity was noted upon encapsulation, due to the sustained release of the drug.info:eu-repo/semantics/publishedVersio

    Chemical Constituents from the Roots of <i>Furcraea bedinghausii</i> Koch

    Get PDF
    Phytochemical investigation of the roots of Furcraea bedinghausii Koch. Led to the isolation of a mixture of two new homoisoflavones, 5,7-dihydroxy-3-(3,4-methylenedioxybenzyl)-chromone (4a) and 5,7-dihydroxy-3-(4-methoxybenzyl)-chromone (4b), together with the known β-sitosterol (1), 7,4'-dihydroxyhomoisoflavane (2), dihydrobonducellin (3), kaempferol (5), 5,7-dihydroxy-3-(4-hydroxybenzyl)-chromone (6), 1-linoleylglycerol (7), 6'-linoleyl-3-O-β-D-glucopyranosyl-β-sitosterol (8), trans-3,3',5,5'-tetrahydroxy-4'-methoxystilbene (9), yuccaol C (10), yuccaol D (11), 3-O-b-D-glucopyranosyl-b-sitosterol (12), 4-[6-O-(4-hydroxy-3,5-dimethoxybenzoyl)-β-D-glucopyranosyloxy]-3-methoxybenzoic acid (13) and two pairs of steroidal saponins: (25R)-2α-3β–dihydroxy-5α-spirostan-12-one 3-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (14a) and (25R)-2α-3β–dihydroxy-5α-spirost-9-en-12-one 3-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (14b), (25R)-3β–hydroxy-5α-spirostan-12-one 3-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (15a) and (25R)-3β–hydroxy-5α-spirost-9-en-12-one 3-O-β-D-glucopyranosyl-(1→2)-O-[β-D-xylopyranosyl-(1→3)]-O-β-D-glucopyranosyl-(1→4)-β-D-galactopyranoside (15b). Their structures were elucidated by interpretation of spectral data and by comparison with literature

    Amberlist A-21 an Exellent Heterogeneous Catalyst for the Conversion of Carbonyl compounds to Oximes

    No full text
    • …
    corecore