9 research outputs found
Structural basis for the cooperative DNA recognition by Smad4 MH1 dimers
Smad proteins form multimeric complexes consisting of the ‘common partner’ Smad4 and receptor regulated R-Smads on clustered DNA binding sites. Deciphering how pathway specific Smad complexes multimerize on DNA to regulate gene expression is critical for a better understanding of the cis-regulatory logic of TGF-β and BMP signaling. To this end, we solved the crystal structure of the dimeric Smad4 MH1 domain bound to a palindromic Smad binding element. Surprisingly, the Smad4 MH1 forms a constitutive dimer on the SBE DNA without exhibiting any direct protein–protein interactions suggesting a DNA mediated indirect readout mechanism. However, the R-Smads Smad1, Smad2 and Smad3 homodimerize with substantially decreased efficiency despite pronounced structural similarities to Smad4. Therefore, intricate variations in the DNA structure induced by different Smads and/or variant energetic profiles likely contribute to their propensity to dimerize on DNA. Indeed, competitive binding assays revealed that the Smad4/R-Smad heterodimers predominate under equilibrium conditions while R-Smad homodimers are least favored. Together, we present the structural basis for DNA recognition by Smad4 and demonstrate that Smad4 constitutively homo- and heterodimerizes on DNA in contrast to its R-Smad partner proteins by a mechanism independent of direct protein contacts
TGF-? vs BMP: Structure of smadI MHI/DNA complex reveals distinctive rearrangements of a-helix1
Ph.DDOCTOR OF PHILOSOPH
Purification, crystallization and preliminary X-ray diffraction analysis of the HMG domain of Sox17 in complex with DNA
Crystals of the Sox17 HMG domain bound to LAMA1 enhancer DNA-element crystals that diffracted to 2.75 Å resolution were obtained
Strategic Design of Catalytic Lysine-Targeting Reversible Covalent BCR-ABL Inhibitors
Targeted covalent
inhibitors have re-emerged as validated drugs to overcome acquired resistance
in cancer treatment. Herein, by using a carbonyl boronic acid warhead, we
report the structure-based design of BCR-ABL inhibitors via reversible covalent
targeting of the catalytic lysine with improved single-digit nanomolar potency
against both wild-type and mutant ABL kinases, especially ABLT315I
bearing the gatekeeper residue mutation. We show that, by using techniques
including mass spectrometry, time-dependent biochemical assays and X-ray
crystallography, the evolutionarily conserved lysine can be targeted
selectively. Furthermore, we show that the selectivity depends largely on molecular
recognition of the non-covalent pharmacophore in this class of inhibitors,
probably due to the moderate reactivity of the warhead. We report the first
co-crystal structures of covalent inhibitor-ABL kinase domain complexes,
providing insights into the interaction of this warhead with the catalytic
lysine. We also employed label-free mass spectrometry to evaluate potential
off-targets of our compounds at proteome-wide level in different cancer cell
lines
Loss of PYCR2 Causes Neurodegeneration by Increasing Cerebral Glycine Levels via SHMT2
Patients lacking PYCR2, a mitochondrial enzyme that synthesizes proline, display postnatal degenerative microcephaly with hypomyelination. Here we report the crystal structure of the PYCR2 apo-enzyme and show that a novel germline p.Gly249Val mutation lies at the dimer interface and lowers its enzymatic activity. We find that knocking out Pycr2 in mice phenocopies the human disorder and depletes PYCR1 levels in neural lineages. In situ quantification of neurotransmitters in the brains of PYCR2 mutant mice and patients revealed a signature of encephalopathy driven by excessive cerebral glycine. Mechanistically, we demonstrate that loss of PYCR2 upregulates SHMT2, which is responsible for glycine synthesis. This hyperglycemia could be partially reversed by SHMT2 knockdown, which rescued the axonal beading and neurite lengths of cultured Pycr2 knockout neurons. Our findings identify the glycine metabolic pathway as a possible intervention point to alleviate the neurological symptoms of PYCR2-mutant patients. Escande-Beillard et al. establish a mouse model of PYCR2 inactivation that phenocopies human neurodegenerative disease (HLD10). Metabolomic and functional analyses in mutant mice and patients reveal that cerebral hyperglycinemia is a driver of the disease, which can be corrected by inhibiting SHMT2