1,075 research outputs found
The cosmological constant and dark energy in braneworlds
We review recent attempts to address the cosmological constant problem and
the late-time acceleration of the Universe based on braneworld models. In
braneworld models, the way in which the vacuum energy gravitates in the 4D
spacetime is radically different from conventional 4D physics. It is possible
that the vacuum energy on a brane does not curve the 4D spacetime and only
affects the geometry of the extra-dimensions, offering a solution to the
cosmological constant problem. We review the idea of supersymmetric large extra
dimensions that could achieve this and also provide a natural candidate for a
quintessence field. We also review the attempts to explain the late-time
accelerated expansion of the universe from the large-distance modification of
gravity based on the braneworld. We use the Dvali-Gabadadze-Porrati model to
demonstrate how one can distinguish this model from dark energy models in 4D
general relativity. Theoretical difficulties in this approach are also
addressed.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy, 22
pages, 13 figures, references adde
Role of Brans-Dicke Theory with or without self-interacting potential in cosmic acceleration
In this work we have studied the possibility of obtaining cosmic acceleration
in Brans-Dicke theory with varying or constant (Brans- Dicke
parameter) and with or without self-interacting potential, the background fluid
being barotropic fluid or Generalized Chaplygin Gas. Here we take the power law
form of the scale factor and the scalar field. We show that accelerated
expansion can also be achieved for high values of for closed Universe.Comment: 12 Latex pages, 20 figures, RevTex styl
Photon Spectrum Produced by the Late Decay of a Cosmic Neutrino Background
We obtain the photon spectrum induced by a cosmic background of unstable
neutrinos. We study the spectrum in a variety of cosmological scenarios and
also we allow for the neutrinos having a momentum distribution (only a critical
matter dominated universe and neutrinos at rest have been considered until
now). Our results can be helpful when extracting bounds on neutrino electric
and magnetic moments from cosmic photon background observations.Comment: RevTex, 14 pages, 3 figures; minor changes, references added. To
appear in Phys. Rev.
Dynamical System Approach to Cosmological Models with a Varying Speed of Light
Methods of dynamical systems have been used to study homogeneous and
isotropic cosmological models with a varying speed of light (VSL). We propose
two methods of reduction of dynamics to the form of planar Hamiltonian
dynamical systems for models with a time dependent equation of state. The
solutions are analyzed on two-dimensional phase space in the variables where is a function of a scale factor . Then we show how the
horizon problem may be solved on some evolutional paths. It is shown that the
models with negative curvature overcome the horizon and flatness problems. The
presented method of reduction can be adopted to the analysis of dynamics of the
universe with the general form of the equation of state .
This is demonstrated using as an example the dynamics of VSL models filled with
a non-interacting fluid. We demonstrate a new type of evolution near the
initial singularity caused by a varying speed of light. The singularity-free
oscillating universes are also admitted for positive cosmological constant. We
consider a quantum VSL FRW closed model with radiation and show that the
highest tunnelling rate occurs for a constant velocity of light if and . It is also proved that the considered class of
models is structurally unstable for the case of .Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR
A serendipitous all sky survey for bright objects in the outer solar system
We use seven yearʼs worth of observations from the Catalina Sky Survey and the Siding Spring Survey covering most of the northern and southern hemisphere at galactic latitudes higher than 20° to search for serendipitously imaged moving objects in the outer solar system. These slowly moving objects would appear as stationary transients in these fast cadence asteroids surveys, so we develop methods to discover objects in the outer solar system using individual observations spaced by months, rather than spaced by hours, as is typically done. While we independently discover eight known bright objects in the outer solar system, the faintest having no new objects are discovered. We find that the survey is nearly 100% efficient at detecting objects beyond 25 AU for ( in the southern hemisphere) and that the probability that there is one or more remaining outer solar system object of this brightness left to be discovered in the unsurveyed regions of the galactic plane is approximately 32%
Quantum driven Bounce of the future Universe
It is demonstrated that due to back-reaction of quantum effects, expansion of
the universe stops at its maximum and takes a turnaround. Later on, it
contracts to a very small size in finite future time. This phenomenon is
followed by a " bounce" with re-birth of an exponentially expanding
non-singular universe
Cosmic distance-duality as probe of exotic physics and acceleration
In cosmology, distances based on standard candles (e.g. supernovae) and
standard rulers (e.g. baryon oscillations) agree as long as three conditions
are met: (1) photon number is conserved, (2) gravity is described by a metric
theory with (3) photons travelling on unique null geodesics. This is the
content of distance-duality (the reciprocity relation) which can be violated by
exotic physics. Here we analyse the implications of the latest cosmological
data sets for distance-duality. While broadly in agreement and confirming
acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia
at z > 0.5, perhaps due to lensing magnification bias. This brightening has
been interpreted as evidence for a late-time transition in the dark energy but
because it is not seen in the d_A data we argue against such an interpretation.
Our results do, however, rule out significant SN-Ia evolution and extinction:
the "replenishing" grey-dust model with no cosmic acceleration is excluded at
more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby
illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication
in PR
Particle-Like Description in Quintessential Cosmology
Assuming equation of state for quintessential matter: , we
analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown
that its dynamics is formally equivalent to that of a classical particle under
the action of 1D potential . It is shown that Hamiltonian method can be
easily implemented to obtain a classification of all cosmological solutions in
the phase space as well as in the configurational space. Examples taken from
modern cosmology illustrate the effectiveness of the presented approach.
Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis
of acceleration and horizon problems, are presented. The inverse problem of
reconstructing the Hamiltonian dynamics (i.e. potential function) from the
luminosity distance function for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to
investigation of quintessence models were adde
Inflation with a constant ratio of scalar and tensor perturbation amplitudes
The single scalar field inflationary models that lead to scalar and tensor
perturbation spectra with amplitudes varying in direct proportion to one
another are reconstructed by solving the Stewart-Lyth inverse problem to
next-to-leading order in the slow-roll approximation.
The potentials asymptote at high energies to an exponential form,
corresponding to power law inflation, but diverge from this model at low
energies, indicating that power law inflation is a repellor in this case. This
feature implies that a fine-tuning of initial conditions is required if such
models are to reproduce the observations. The required initial conditions might
be set through the eternal inflation mechanism.
If this is the case, it will imply that the spectral indices must be nearly
constant, making the underlying model observationally indistinguishable from
power law inflation.Comment: 20 pages, 7 figures. Major changes to the Introduction following
referee's comments. One figure added. Some other minor changes. No conclusion
was modifie
A Planck-scale axion and SU(2) Yang-Mills dynamics: Present acceleration and the fate of the photon
From the time of CMB decoupling onwards we investigate cosmological evolution
subject to a strongly interacting SU(2) gauge theory of Yang-Mills scale
eV (masquerading as the factor of the SM at
present). The viability of this postulate is discussed in view of cosmological
and (astro)particle physics bounds. The gauge theory is coupled to a spatially
homogeneous and ultra-light (Planck-scale) axion field. As first pointed out by
Frieman et al., such an axion is a viable candidate for quintessence, i.e.
dynamical dark energy, being associated with today's cosmological acceleration.
A prediction of an upper limit for the duration of the
epoch stretching from the present to the point where the photon starts to be
Meissner massive is obtained: billion years.Comment: v3: consequences of an error in evolution equation for coupling
rectified, only a minimal change in physics results, two refs. adde
- …