89 research outputs found

    Modeling Surface and Subsurface Stormflow on Steeply-Sloping Forested Watersheds

    Get PDF
    A simple conceptual rainfall-runoff model, based on the variable source area concept, was developed for predicting runoff from small, steep-sloped, forested Appalachian watersheds. Tests of the model showed that the predicted and observed daily discharges were in good agreement. The results demonstrate the ability of the model to simulate the flashy hydrologic behavior of these watersheds. Five subsurface flow models were evaluated by application to existing data measured at Coweeta on a reconstructed homogeneous forest soil. The five models were: Nieber \u27s 2-D and 1-D finite element models (based on Richards\u27 equation), the kinematic wave equation, and two simple storage models developed by the authors, the Boussinesq and kinematic storage models. All five models performed reasonably well on this homogeneous soil. The coupled infiltration model had a large effect on the simulation results. The cost of running the computer models and the computer memory requirements increased as their complexity increased. Field soil-water and precipitation measurements were made on a small test plot in Robinson Forest, in Eastern Kentucky. These data were used to calculate runoff during four precipitation events and to test three of the subsurface flow models on a natural watershed. Of the models tested, the simple kinematic storage model performed the best. Flow from the test plot was dominated by macropore flow during storm events, and by flow through the soil matrix during baseflow or recession periods. No surface runoff was observed on the test plot during the period of field observations, except on the saturated near-channel source areas; all runoff was initiated by subsurface flow

    Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers

    Get PDF
    Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional “neurosphere” culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: • The synthesis and characterization of heparin based microcarriers. • A “static” 3D culture method for that does not require spinner flask equipment. • “Dynamic” culture in which cell loaded microcarriers are transferred to a spinner flask. © 2020 The Author

    Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme

    Get PDF
    Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumour, which is associated with a poor two-year survival rate and a high rate of fatal recurrence near the original tumour. Focal/local drug delivery devices hold promise for improving therapeutic outcomes for GBM by increasing drug concentrations locally at the tumour site, or by facilitating the use of potent anti-cancer drugs that are poorly permeable across the blood brain barrier (BBB). For inoperable tumours, stereotactic delivery to the tumour necessitates the development of nanoscale/microscale injectable drug delivery devices. Herein we assess the ability of a novel class of polymer nanotube (based on poly(ethylene glycol) (PEG)) to load doxorubicin (a mainstay breast cancer therapeutic with poor BBB permeability) and release it slowly. The drug loading properties of the PEG nanotubes could be tuned by varying the degree of carboxylic acid functionalisation and hence the capacity of the nanotubes to electrostatically bind and load doxorubicin. 70% of the drug was released over the first seven days followed by sustained drug release for the remaining two weeks tested. Unloaded PEG nanotubes showed no toxicity to any of the cell types analysed, whereas doxorubicin loaded nanotubes decreased GBM cell viability (C6, U-87 and U-251) in a dose dependent manner in 2D in vitro culture. Finally, doxorubicin loaded PEG nanotubes significantly reduced the viability of in vitro 3D GBM models whilst unloaded nanotubes showed no cytotoxicity. Taken together, these findings show that polymer nanotubes could be used to deliver alternative anti-cancer drugs for local therapeutic strategies against brain cancers

    Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain

    Get PDF
    Interleukin-13 (IL-13) drives cells of myeloid origin towards a more anti-inflammatory phenotype, but delivery to the brain remains problematic. Herein, we show that heparin-based cryogel microcarriers load high amounts of IL-13, releasing it slowly. Intra-striatal injection of loaded microcarriers caused local up-regulation of ARG1 in myeloid cells for pro-regenerative immunomodulation in the brain

    Macroporous heparin-based microcarriers allow long-term 3D culture and differentiation of neural precursor cells

    Get PDF
    Adult neurogenesis and the neurogenic niche in the dentate gyrus are subjects of much research interest. Enhancing our knowledge of this niche process and the role played by this unique microenvironment would further our understanding of plasticity and its relevance for cognition in health and disease. The complex three-dimensional (3D) nature of the niche microenvironment is poorly recapitulated in current cell culture experimental procedures. Neural precursor cells (NPCs) are cultured either on two-dimensional (2D) surfaces, where cells quickly reach confluency and passaging is required, or as 3D neurospheres, with the limitation of poor diffusion of nutrients and thus partial differentiation of cells over time. Herein, we culture NPCs on microscale scaffolds termed microcarriers, composed of poly(ethylene glycol) and heparin, designed to more closely represent the 3D environment of the neurogenic niche. The interconnected macroporous structure of the microcarriers allows NPCs to attach to their pore walls with subsequent continuous proliferation (analyzed up to 28 days) without formation of a necrotic core. Removal of basic fibroblast growth factor and epidermal growth factor from the culture medium results in differentiation of the NPCs. Unlike 2D culture, a high percentage of neurons was achieved on the microcarriers (22% MAP2 positive cells) indicating that these 3D microscale scaffolds give a more conducive environment for neuronal differentiation. Microcarrier culture of NPCs allows long-term cell expansion and better differentiation, which provides superior culture conditions for studying/modelling the neurogenic niche

    Static and dynamic 3D culture of neural precursor cells on macroporous cryogel microcarriers

    Get PDF
    Neural precursor cells have been much studied to further our understanding of the far-reaching and controversial question of adult neurogenesis. Currently, differentiation of primary neural precursor cells from the mouse dentate gyrus via 2-dimentional in vitro culture yields low numbers of neurons, a major hindrance to the field of study. 3-dimentional “neurosphere” culture allows better 3D cell-cell contact, but control over cell differentiation is poor because nutrition and oxygen restrictions at the core of the sphere causes spontaneous differentiation, predominantly to glial cells, not neurons. Our group has developed macroporous scaffolds, which overcome the above-mentioned problems, allowing long-term culture of neural stem cells, which can be differentiated into a much higher yield of neurons. Herein we describe a method for culturing neural precursor cells on RGD peptide functionalized-heparin containing cryogel scaffolds, either in standard non-adherent well-plates (static culture) or in spinner flasks (dynamic culture). This method includes: • The synthesis and characterization of heparin based microcarriers. • A “static” 3D culture method for that does not require spinner flask equipment. • “Dynamic” culture in which cell loaded microcarriers are transferred to a spinner flask

    Injectable glycosaminoglycan-based cryogels from well-defined microscale templates for local growth factor delivery

    Get PDF
    Glycosaminoglycan-based hydrogels hold great potential for applications in tissue engineering and regenerative medicine. By mimicking the natural extracellular matrix processes of growth factor binding and release, such hydrogels can be used as a sustained delivery device for growth factors. Since neural networks commonly follow well-defined, high-aspect-ratio paths through the central and peripheral nervous system, we sought to create a fiber-like, elongated growth factor delivery system. Cryogels, with networks formed at subzero temperatures, are well-suited for the creation of high-aspect-ratio biomaterials, because they have a macroporous structure making them mechanically robust (for ease of handling) yet soft and highly compressible (for interfacing with brain tissue). Unlike hydrogels, cryogels can be synthesized in advance of their use, stored with ease, and rehydrated quickly to their original shape. Herein, we use solvent-assisted microcontact molding to form sacrificial templates, in which we produced highly porous cryogel microscale scaffolds with a well-defined elongated shape via the photopolymerization of poly(ethylene glycol) diacrylate and maleimide-functionalized heparin. Dissolution of the template yielded cryogels that could load nerve growth factor (NGF) and release it over a period of 2 weeks, causing neurite outgrowth in PC12 cell cultures. This microscale template-assisted synthesis technique allows tight control over the cryogel scaffold dimensions for high reproducibility and ease of injection through fine gauge needles

    Geometric methods on low-rank matrix and tensor manifolds

    Get PDF
    In this chapter we present numerical methods for low-rank matrix and tensor problems that explicitly make use of the geometry of rank constrained matrix and tensor spaces. We focus on two types of problems: The first are optimization problems, like matrix and tensor completion, solving linear systems and eigenvalue problems. Such problems can be solved by numerical optimization for manifolds, called Riemannian optimization methods. We will explain the basic elements of differential geometry in order to apply such methods efficiently to rank constrained matrix and tensor spaces. The second type of problem is ordinary differential equations, defined on matrix and tensor spaces. We show how their solution can be approximated by the dynamical low-rank principle, and discuss several numerical integrators that rely in an essential way on geometric properties that are characteristic to sets of low rank matrices and tensors
    • …
    corecore