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ABSTRACT 

A simple conceptual rainfall-runoff model, based on the variable 

source area concept, was developed for predicting runoff from small, 

steep-sloped, forested Appalachian watersheds. Tests of the model 

showed that the predicted and observed daily discharges were in good 

agreement. The results demonstrate the ability of the model to sim

ulate the "flashy" hydrologic behavior of these watersheds. 

Five subsurface flow models were evaluated by application to 

existing data measured at Coweeta on a reconstructed homogeneous 

forest soil. The five models were: N ieber 's 2-D and 1-D finite 

element models (based on Richards' equation), the kinematic wave 

equation, and two simple storage models developed by the authors, 

the Boussinesq and kinematic storage models. All five models per

formed reasonably well on this homogeneous soil. The coupled in

filtration model had a large effect on the simulation results. The 

cost of running the computer models and the computer memory re

quirements increased as their complexity increased. 

Field soil-water and precipitation measurements were made on 

a small test plot in Robinson Forest, in Eastern Kentucky. These 

data were used to calculate runoff during four precipitation events 

and to test three of the subsurface flow models on a natural water

shed. Of the models tested, the simple kinematic storage model per

formed the best. Flow from the test plot was dominated by macro

pore flow during storm events, and by flow through the soil matrix 

during baseflow or recession periods. No surface runoff was observed 

on the test plot during the period of field observations, except on 

the saturated near-channel source areas; all runoff was initiated by 

subsurface flow. 

Descriptors: Forest watershed*; forest hydrology; mathematical models; 

model testing; subsurface .flow*; subsurface water; runoff. 

Identifiers: Macropore flow; stormflow; steeply-sloping forested water

sheds; watershed models; process models. 
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CHAPTER 1 

INTRODUCTION 

The hydrologic response of a watershed is dependent on many 

highly interrelated and complex factors. The major components 

of the hydrologic cycle are precipitation inputs, evapotranspiration, 

interception, surface storage, infiltration, surface runoff, subsurface 

flow and groundwater discharge, and total water yield or streamflow. 

Land use changes which may influence one or more of these com

ponents on a given watershed could have significant impacts on the 

hydrologic environment at the watershed outlet and at points down-

. stream. Before the effects of land use changes can be modeled, 

the governing flow processes on natural undisturbed watersheds must 

be well understood. The hydrologic processes that occur on steep

sloped forested watersheds are generally less well defined (quanti

tatively) that those occurring on milder slopes such as in agricultural 

and urban areas. 

Steeply sloping forested watersheds, such as those found in 

the Appalachian region of eastern Kentucky, are important sources 

of wood fiber products and coal. The latter is becoming more and 

more important as an energy source. There is .. a growing awareness 

of the need to protect the quality of the environment and this is 

reflected in part by Public Law 95-87, the Surface Mine Reclama

tion Act of 1977. This legislation requires a hydrologic study on 

all areas to be surface mined. Furthermore, it recognizes that a 

sound understanding of the hydrologic balance of affected watersheds 

is required and recognizes that this balance should be modified as 
little as possible so as not to damage the fragile ecosystem. Though 

not subjected to the same legislative control, the forestry industry 

should, and for the most part does, operate under the same general 

principles. The hydrologic effects of clear-cut logging are especially 

important in this case. Of all forestry practices, clear-cut logging 

has perhaps the greatest potential for harming the hydrologic environ

ment. With knowledge of hillslope hydrology so poorly developed, 
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it is doubtful whether physically accurate hydrologic (and hence 

environmental studies) can be performed at this time. The focus 

of this report is to examine quantitative. methods of describing the 

hydrologic response of steep-sloped forested watersheds in the Ap

palachian region. 

The Hortonian concept of infiltration and runoff (Horton, 1933) 

has traditionally been used to predict storm runoff. The essence 

of this widely used concept is that storm runoff is rainfall that has 

not penetrated the soil and baseflow is produced by seepage from 

the water table. It is represented in mathematical terms as 

R = P - I - E •. (1) 

where R is runoff, P is precipitation, is infiltration, and E is evapo

ration. 

Precipitation and evaporation can be measured with limited 

accuracy, but estimates of infiltration are often subjective because 

of the variability of infiltration characteristics over even small areas. 

However, the major drawback to the concept is that it does not allow 

for lateral saturated/unsaturated subsurface flow (Zaslavsky and Sinai, 

1981). When using the Hortonian concept in areas other than agri

cultural lands or urban areas, where it may be most accurate concep

tually, gross errors can result in predicting runoff. 

Lateral subsurface flow has often been observed in field studies 

on steep-sloped forested watersheds (Mosley, 1979; Kirkby and Chorley, 

1967; Whipkey, 1965; Dunne and Black, 1970; and others). It has 

also been recognized that the various runoff processes have greater 

heterogeneity than originally believed. The variable source area 

concept has evolved as a result, being first proposed by Hewlett (1961). 

The specific objectives of this project were: 

(1) To identify the major mechanisms of stormflow on steeply 
sloping watersheds, characteristic of eastern Kentucky, 
and quantify the principal components. 

(2) To test and develop computer-based models for predicting 
stormflow on steeply-sloping forested watersheds. Two 
"types of models were examined: (a) daily-based continuous 
simulation models of an entire watershed's hydrologic re
sponse; and (b) event process models of hillslope hydro
logic response. 
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Chapter 2 presents a review of the literature dealing with run

off processes (qualitative) and runoff models (qualitative). Field 

studies were conducted on a steep-sloped watershed and a test plot 

in Robinson Forest, Eastern Kentucky, to determine what runoff pro

cesses are dominant on these types of watersheds. The watersheds 

and the field studies are described in Chapter 3. These studies pro

vided the precipitation and runoff records for developing and testing 

the daily-based continuous-simulation and the event process models. 

A simple conceptual, lumped-parameter, continuous, daily-based, 

rainfall-runoff model, based on the variable source area concept, 

was developed and tested using 6t years of record from the Little 

Millseat watershed in Robinson Forest. The model is briefly described 

in Chapter 4, together with the testing and evaluation procedures 

and results. 

Existing field data, measured at the Coweeta Experimental 

Station by Hewlett (1961) and Hewlett and Hibbert (1963), were used 

to compare existing subsurface flow process models. The models 

tested include a two-dimensional finite element saturated-unsaturated 

flow model (Nieber, 1979; Nieber and Walter, 1981), a one-dimen

sional finite element saturated-unsaturated stormflow model (Beven, 

1981, 1982). Two simplified storage models were also developed 

and compared, using the Coweeta data. These results are presented 

in Chapter 5. 

Chapter 6 presents the. analysis of the test plot data (instru

mentation described in Chapter 3) and the method of calculating the 

runoff using a hydrologic water balance approach. This chapter 

also presents the results of the comparison of three of the subsur

face flow models using the instrumented test plot data. Finally, Chap

ter 7 presents the conclusions stemming from this study. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 MECHANISMS OF RUNOFF GENERATION 

Knowledge of the processes involved in runoff generation and 

the conversion of rainfall to stream flow has slowly evol.ved since 

Horton first identified the relationship between infiltration and 

overland flow in 1933 (Horton, 1933) .. · We now understand that Hor

ton's infiltration theory of surface runoff represents one extreme 

of the spectrum of processes involved. Hursch (1936) identified the 

other extreme as subsurface stormflow. Since that time many field 

studies have been conducted where both of these extremes were 

observed individually and in combination to varying degrees. 

The classical description of the runoff process was first pro

posed by Horton (1933) with his infiltration theory. It was assumed 

that infiltration occurred uniformly throughout a watershed. During 

a precipitation event the infiltrability decreases (as the soil saturates 

from above) until the rainfall intensity exceeds the infiltrability at 

which time surface runoff begins in the form of overland flow. This 

rainfall excess, the water that does not infiltrate, was thought to 

produce overland flow over the entire watershed at once. It was 

believed that only overland flow exhibits the quick response times 

necessary to generate stormflow and that infiltrated water becomes 

the source of long-term baseflow. Therefore, in the Horton concept

ualization of the runoff process all storm flow is water that never 

infiltrates the soil. The concept has persisted, been modified, and 

incorporated into many sophisticated computer models such as the 

Stanford Watershed Model IV (Crawford and Linsley, 1966). It is 

easy to visualize and use, especially if the unit hydrog raph method 

is used for predicting the timing of runoff (Sherman, 1932). Over

land flow due to surface saturation from above does occur as Horton 

found, but the concept has been widely misused. Some examples 

of areas of occurrence are unvegetated surfaces, deserts, farm lands, 

urban areas, and ·areas exhibiting low infiltrabilities. Application 
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to steep-sloped forested watersheds in humid climates is often in

appropriate since observance of overland flow in these areas is ex

tremely rare (Mosley, 1979; Kirkby and Chorley, 1967; Whipkey, 

1965). 

Realization that overland flow does not occur uniformly over 

a watershed as originally thought brought about the development 

of the partial source area concept and the variable source area con

cept. The partial source area concept has been widely supported 

by field studies including those by Betson and Marius (1969), Dunne 

and Black (1970), and Corbett (1979). A source area is that part 

of the watershed where precipitation is converted to runoff. The 

process may be by saturation from above as Horton envisioned or 

saturation from below as the water table rises to the soil surface 

(Dunne and Black, 1970; and Pilgrim et al., 1978). These areas are 

often near the stream channel and quickly become saturated during 

a rainfall event. They may also be wetlands with shallow water 

tables that rise as they are fed by infiltration and/or subsurface 

flow from upslope areas. Being adjacent to the channel, the time 

lag is very short for overland flow (Freeze, 1972; Hewlett and Hib

bert, 1967). Freeze {1972) found topography and the physical con

figuration of the basin to be important for the development of near 

channel source areas. Betson and Marius ( 1969) found that the depth 

of the soil surface is important in the generation of stormflow and 

that source areas do not necessarily have to be adjacent to the 

stream. In their studies they found source areas in plac·es where the 

upper soil horizon was thin and the lower horizon had a significantly 

lower permeability. They also found a more heterogeneous runoff 

pattern than had previously been reported and upslope source area 

runoff did not always reach the channel because deeper soils down

slope absorbed the water. 

The field study of Dunne and Black ( 1970) provided evidence 

of the partial source area concept. One of their study areas had 

well drained slopes and poorly drained soils at the base of these 

slopes. They found significant runoff occurred only from the small wet 
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area at the base of the slope. Its low storag·e capacity was quickly 

filled, the water table intersected the surface and then the partial 

source area behaved as an impervious ·area. The runoff was very 

sensitive to rainfall, which confirmed their other observations. The 

rest of the watershed seemed to maintain the wet area which only 

dried up in the summer. Under most rainfall and natural antecedent 

conditions, the runoff hydrograph .was controlled by precipitation that 

fell on the channel and wet areas along the stream. For these· areas 

the conversion of rainfall to runoff was almost 100%. They were also 

extremely sensitive to rainfall intensity fluctuations. 

In the early 1960s, Hewlett (1961) conducted a number of 

field studies at Coweeta and was the first to propose the concept 

of dynamic watershed source areas (i.e. variable source areas), which 

he believed had important implications on headwater hydrology. As he 

studied the drainage of water downslope in soil troughs, moisture 

gradients were observed that increased downslope, as shown in Figure 

2.1. It was proposed that rain falling after drainage had set up these 

hydraulic gradients quickly satisfied the soil water deficits near the 

channel, saturating the soil, and thus set up conditions for stormflow 

generation. The deficits upslope would take longer to satisfy, but as 

rainfall continued the contributing area would expand. His concept 

was that stormflow is generated from precipitation over saturated 

areas which begin to contribute as deficits are satisfied. Upslope 

rain subsequently recharges the soil for sustained base flow and the 

maintenance of the channel wet areas. 

When soil moisture levels are high and the water table is close 

to the surface, only a small input is needed for the relaxation of 

tension in the soil pores and the rapid rise of the water table. The 

rate of runoff to the channel then accelerates for several reasons. 

The saturated thickness of soil is thicker allowing greater subsurface 

flow. As the water table rises the zone of saturation moves upward 

into the loose permeable surface layer which may be highly structured 
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by biological activity. Seepage in this highly structured layer occurs 

at higher velocities and may even approach turbulent flow. Finally, 

if the precipitation input is great enough, the water table will rise 

to the surface and overland flow will occur. 

Dunne and Black (1970) also applied artificial storms of high 

return periods to their watersheds. Similar mechnaisms to those 

in the natural storms were observed. In one test, rain was applied 

only to the channel area and a hydrograph s1milar to natural storms 

was observed. As the durations were increased the source areas 

expanded. In the watershed which contained the wet area, the source 

area expanded when a perch water table developed in the A horizon 

and rose to the surface. It was not able to extend very far up the 

steep slopes, but additional water was contributed by water return

ing to the surface. They concluded that the response of the var

iable source areas depends on the season and proposed an antecedent 

precipitation index to predict response. 

Corbett (1979) studied a small forested watershed in Pennsyl

vania with an average slope of 36% and soil depths varying from 

0.45 to 2.55 m. After extensive experimentation with the application 

of artificial rainfall, he concluded that the variable source area con

cept provided the best framework with which to evaluate the water

shed's response. The front por.tion of the watershed had shallow 

soils draining to the channel while the back portion had to drain 

through deep soils to reach the stream (Figure 2.2). He observed 

a delay between the response of the front and back halves of the 

watershed. For dry antecedent moisture conditions he observed that 

the rising limb and the peak of the hydrog raph were produced by 

contributions from precipitation on the channel and the base of the 

slope only. The lower and middle slopes provided the major portion 

of runoff during the recession. For a 4.88 cm storm the conversion 

efficiency of rainfall to runoff was 19% for the channel zone, 9% 

for the base slope and 4.4% for the middle and upper slopes. 

For wet antecedent moisture conditions Corbett ( 1979) observed 
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peak flow rates two to three times greater than those for the dry 

antecedent conditions and a substantial increase in the amount of 

rainfall converted to quick and delayed flow. Temporary zones of 

saturation developed during the storm and the development of these 

areas had an important bearing on how efficiently a particular area 

responded to rainfall. The saturated zone developed within the soil 

profile and there was not a general rise of the water table. Sur

face runoff did not occur on the side slopes and Corbett considered 

saturated overland flow to be only a minor contributor even in wet 

conditions. Under dry antecedent conditions direct surface runoff 

was practically nonexistent. 

2.2 SUBSURFACE STORMFLOW 

Subsurface stormflow (i.e. quick response interflow) can be 

distinguished from true groundwater flow in that. it enters the stream 

before reaching the groundwater zone (Whipkey, 1965). Over the 

range of antecedent moisture conditions tested, Corbett (1979) esti

mated that subsurface stormflow provided 75 to 97% of the storm-

flow. volume. Saturated overland flow was a minor factor under 

wet conditions and practically nonexistent for dry conditions. For 

dry antecedent conditions the peak was produced by channel precipi

tation and precipitation at the base of the slope adjacent to the 

st ream. With wet antecedent conditions a temporary zone of satura

tion built up and travelled as a wave with the crest discharging into 

the channel to produce the hydrograph peak. Of all the variables 

investigated, the antecedent flow rate had the greatest correlation 

with quickflow. It is probably the best overall indicator of the ex

tent of the saturated variable source areas. Tischerdorf ( 1969) ob

served similar mechanisms in his study of an Appalachian watershed 

in Georgia. The upper soil zone (0.9 to 1.2 m) responded to. rainfall 

quite rapidly ( which is discussed later). 

Undisturbed forest soils are likely places to look for subsurface 

stormflow. The organic litter protects the mineral soil and main-

tains high surface permeabilities that promote high percolation rates 
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to the A and B horizons. The upper soil profile can be interlaced 

with roots, decayed root holes, animal burrows, worm holes, and 

structural channels ( i.e. macropores) making a highly permeable med

ium for the rapid movement of water in all directions (Figure 2.3). 

When a relatively impermeable layer is reached percolating water 

moves laterally towards the stream (Mosley, 1979; Pilgrim et al., 

1978; Weyman, 1970, 1973; Whipkey, 1965, 1967; Corbett, 1979). 

Water can therefore move in the subsurface regime by moving either 

through the soil matrix, or through macropores in the soil profile. 

The rates of water movement through these two zones are likely 

to be vastly different. 

FOREST 
LITTER 

DISCONTINUITY IN 
DENSITY AND 
PERMEABILITY 

ANIMAL 
_ _, BURROWS 

ROOTS AND ROOTHOLES 

Figure 2.3 Vertical and Lateral Subsurface Flow on a Forested 
Hillslope. 
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2.2.1 Subsurface Stormflow Through the Soil Matrix 

Where there is not a well-developed system of macropores, 

Hewlett and Hibbert ( 1967) proposed the process of displacement 

to account for the rapid response of subsurface flow to rainfall 

(translatory flow). They proposed that if the soil is at or above field 

capacity, precipitation input thickens the water films surrounding 

the soil particles, causing the release of previously stored water. 

This translatory flow enters the saturated zone, moves downslope 

as a pulse and if it emerges at the surface, contributes to storm

flow. This contribution then is previously stored water and not new 

water. Hewlett and Hibbert (1967) also proposed that subsurface 

flow, not surface flow, is the major process causing the extension 

of perennial channels into intermittent and ephemeral channels by 

returning to the surface as return flow. 

If the stream channel is deeply incised as proposed by Freeze 

(1972), subsurface flow can discharge directly into the stream. As 

precipitation continues, the zone of saturation increases in depth 

and extent. Lateral subsurface flow accelerates because of the in

creased saturated layer thickness and the increased hydraulic gradient 

caused by extension of the zone upslope. 

The temporary zones of saturation are critical for the sub

surface flow mechanism (Corbett, 1979). As the zones of saturation 

expand, flow through the capillaries accelerates because of the in

creased saturated thickness and hydraulic gradient, as discussed above 

in connection with translatory flow. More important though, is the 

effect on the macropores. More soil pipes ( macropores) become 

saturated and flow full and the hydraulic gradients are greater for 

them also. The macropores found in forest soils can therefore be 

very important. 

2.2.2 Subsurface Stormflow Through Macropores 

Whipkey (1967) postulated that interconnected macrochannels 

formed by roots and animal burrows can provide the means for rapid 

subsurface flow from upper slopes to stream channels. With advanced 
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growth, roots can become major soil forming agents compressing 

the soil causing local changes in porosity and bulk density ( Corbett, 

1979). When they decay they leave openings, resulting in a large· 

increase in noncapillary porosity (Retzer, 1963). As trees move in 

the wind, their roots will loosen the soil and open the structure 

in surface and deeper horizons. Stem flow at the base of trees 

then becomes important. Animal burrows, which can be extensive 

in natural watersheds, can also act like subsurface pipe networks 

and can rapidly transport water through the soil profile. Beasley 

(1976) and Corbett (1979) supposed that if subsurface stormflow 

is to occur in macrochannels they must be open to the surface and 

be under a positive head at the openings. This could occur at the 

base of trees, in depressions formed by uprooted trees, in decaying 

stumps, and where animal activity is found. Such conditions are 

common in forested environments (Beasley, 1976). 

Barcelo and Nieber (1982) used a computer model to study 

the influence of soil pipe networks on watershed hydrology. They 

showed that a conduit system in the soil increases the overall response 

to precipitation (Figure 2.4). Soil pipes also accelerate the contri

bution to streams by short -circuiting the slope between productive 

source areas and source areas adjacent to the stream (Figure 2.5). 

Such source areas were observed by Betson and Marius (1967) and 

Pilgrim et al. (1978). Jones ( 1975) estimated that 25% of stream 

flow was contributed by pipe flow for the watershed he studied. 

The lag time for discharge from the soil pipes also suggested that 

the flow must have entered the pipe through cracks and holes that 

connected directly to the surface. Barcelo and Nieber ( 1982) found 

that soil pipes can increase the peak discharge of the watershed, 

increase the volume of water removed during the storm flow period, 

and significantly affect moisture distribution on the hillslope. The 

contribution of a single pipe is dependent on the antecedent mois

ture conditions surrounding the pipe. Their overall conclusion was 

that soil pipes act as a collective network to accelerate drainage 
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and reduce the potential for moisture storage in the soil matrix. 

Field studies indicate that rapid flow is more likely to occur through 

macropores than by the process of displacement and capillary flow. 

Pilgrim et al. ( 1978) used specific conductance and the concen

tration of dissolved solids to show that there was a short flushing 

effect and then both surface and subsurface flows were composed 

almost entirely of new water. This confirmed that rapid subsurface 

flow must be occurring through macropores. and not the soil matrix. 

Suspended sediments were transported by subsurface water which 

must have come through_ macropores. They believed that the sedi

ments were entrained by the falling raindrops. 

2.2.3 Topographic and Geologic Influences on Subsurf~e Stormflow 

A watershed can be divided into valley basisn and interbasins. 

Valley basins and interbasins can have either concave or convex 

slopes, but the valley basin will have concave contours, while the 

interbasin has convex contours (Figure 2.6a). The valley basin is 

water-gathering because the topography brings about the convergence 

of soil water towards the center of the basin (Figure 2.6b). The 

interbasin is water-spreading, indicated by its divergent flow line 

pattern (Nieber, 1979). 

Research by Zaslavsky and Sinai (1981) brings together the 

concepts of rainfall distribution, lateral subsurface and the variable 

source area concept with considerable insight. They found topography 

to be the controlling factor in the mechanisms of lateral subsurface 

flow and moisture distribution in a basin. In particular, they found 

curvature to be the most important parameter. They measured soil 

water content in a field after a rainfall which produced no surface 

runoff or water table. Figure 2.7 shows moisture content plotted 

as a function of curvature. A strong linear relationship can be seen. 

They believed that lateral flow in a case like this was a result of effec

tive anistropy caused by soil layering in the surface transition layer. They 

further believed that soils with root holes and other macropores near the 

surface ·andior those covered with forest litter could be classified 
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as having a significant surface transition layer. They also inves-

tigated other mechanisms of lateral flow and moisture accumulation 

such as splashing of raindrops, flow in layered soils, and the bending 

of streamlines near a water table. For all of these · mechanisms 

topography was the most important parameter. 

Zaslavsky and Sinai (1981) found that the relative amount 

of moisture accumulation depended on the total rainfall, not the 

intensity. Accumulation due to lateral flow continues long after 

rainfall ceases. Using numerical simulation they found that satura

tion occurs initially in the transition layer at the most concave loca

tion, regardless of rainfall intensity. Zaslavsky and Sinai (1981) also 

believed that lateral flow in the transition layer was roughly propor

tional to both the slope and rainfall intensity. 

Freeze (1972) used a three dimensional saturated-unsaturated 

. subsurface flow model coupled with a one dimensional stream flow 

model to investigate the topographic and hydrologic configuration 

effects on mechanisms of runoff in a basin. Unfortunately, he in

vestigated slopes of only 7 .5 and 15%. The results at these slopes 

showed that subsurface stormflow is only significant for convex 

hillslopes feeding deeply incised channels and having high hydraulic 

conductivities (at least 36 cm/hr). 

Kirkby and Chorley ( 1967) believed that the evidence of small 

contributing areas strongly favored subsurface flow as a major fac

tor controlling the flood hydrograph. In hollows and concave slopes 

discharge increases because of convergence of fjow. Convexity in 

either direction has the opposite effect (Figure 2.7). For thinner 

and. less permeable soils moisture content and flow per unit area 

would be higher thus allowing for overland flow at lower intensities. 

The results of Freeze's (1971, 1972) numerical studies support these 

proposals. He found that on concave slopes and convex slopes with 

low permeabilities direct runoff was dominated by overland flow 

on transient near channel saturated areas. Freeze found that satura

tion occurred by infiltration rather than subsurface flow from upslope . 

. Whipkey (1965) studied the flow of water through the soil 
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profile of a forested watershed with . a slope of 28%. Infiltrated 

water essentially flowed vertically through the soil until a compacted 

layer of silt was reached and then lateral flow was initiated. The 

majority of the flow emerged from the layer just above the compact 

silt. The discharge began quickly after rainfall began and peaked 

near the end of the storm. The discharges from the lower depths 

were stable and uniform long after the storm ceased. Not only 

did the structural discontinuity initiate lateral flow, but there was 

evidence that a quasi-impermeable layer formed in front of the wet

ting front as it moved deeper into the soil profile initiating lateral 

flow just above the wetting front. For dry conditions flow started 

from the highest layer and then worked down suggesting that the 

reduction of hydraulic conductivity with moisture content started 

lateral flow. Weyman (1973) also measured the downslope flow of 

water and reached similar conclusions. That is, in general, either 

distinct restricting soil horizons or impermeable bedrock are essential 

for the initiation of lateral flow. 

Dunne and Black ( 1970) observed that subsurface flow origin

ated in the top soil of their concave watershed, as proposed by Kirk

by and Chorley ( 1967). This lateral flow in the A Horizon was 

initiated by the presence of an impeding layer underneath. When 

there was no impeding layer subsurface flow was negligible. In any 

case, they believed that subsurface flow was too small and too late 

to contribute significantly to the rapid rise and fall of the stream 

hydrograph. However, in some storms when the water table rose to 

the surface, this water would return to the surface and its velocity 

would increase by a factor of 100 to 500. When perched water 

tables developed, Dunne and Black observed that channel precipitation, 

direct precipitation on saturated areas and return flow over saturated 

areas as being the prime contributors to stormflow. 

In the studies conducted by Pilgrim et al. (1978) the great 

variability of runoff processes was their most significant observation. 

The principal variable affecting the runoff processes was the depth 

of the soil. Their instrumented slope had a uniform grade of 30% 
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with a surface soil of silty loam 0.31 to 0.76 in in depth, underlain 

by an essentially impermeable layer. Maximum infiltration occurred 

on deeper soils. Horizontal overland flow occurred on part of the 

plot where the rainfall intensity exceeded the infiltrability. At the 

bottom of the plot saturated overland flow occurred when the satu

rated A Horizon reached the surface. The source areas increased 

during the storm, and some were isolated, not adjacent to the chan

nel, as Betson and Marius .( 1969) observed. Subsurface stormflow 

occurred through the extensive network of macropores, emerged as 

return flow and was directly discharged into the stream. Pilgrim 

et al. (1978) concluded that Hortonian runoff (due to saturation 

from above) and saturated overland flow (includes direct precipita

tion on saturated source areas and return flow) were the major con

tributors to stormflow and about equal in magnitude ( this may differ 

for large storms). Subsurface flow was a small component of storm 

runoff but the major contributor to recession flows. During the 

storm period subsurface flow was important in that it contributed 

water to the saturated areas. 

2.2.4 Timing and _Flow_Vf:!_locities Associated with Subsurface Stormflow 

In order for discharge of subsurface flow to occur there 

must be saturation at the outlet (Weyman, 1970, 1973). Whipkey 

(1965) observed a buildup of a mound of soil water that occurred 

at the base of his plot during storms. After· the event it would 

gradually decrease in length and depth. The apparent hydraulic con

ductivity of the subsurface flow, the primary flow contributor, was 

28.6 cm/hr. Considering the physical properties of the media this 

was much higher than expected. However, a large number of root 

holes, cracks, decayed root channels, and earthworm holes were ob

served and must have been interconnected to some extent to account 

for this. Actual discharge in the form of pipe flow was observed 

from many of these openings. The observed short lag times for 

the initiation of individual discharges Jed the researchers to believe 

that some of these openings were open to the surface and became 
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locally saturated by the channeling of water from the canopy and 

fauna, which allowed pipe flow. Their conclusion was that turbu-

lent flow was occurring and that the porous media flow 

may be difficult to apply to heterogeneous forest soils. 

by Weyman (1970) on a watershed in England support 

equations 

Findings 

Whipkey's 

study. He also found a strong similarity with respect to time be-· 

tween the subsurface flow hydrograph and the control section hydro

graph (one weir was just above his study area and another below -

the control section hydrograph was generated by· subtracting the 

upstream hydrograph from the downstream hydrograph) from which 

he deduced that subsurface stormflow was the major mechanism 

of runoff on his plot. However, the stream hydrograph differed and 

he concluded that the headwater zone had faster runoff character

istics and generated the peak. 

Field studies of subsurface stormflow have shown that the 

direct application of Darcy's law to these situations may not be 

realistic (Whipkey, 1965, 1967; Weyman, 1970; Pilgrim et al., 1978; 

Mosley, 1979). At present there are at least three deterministic 

approaches to representing the turbulent nature of subsurface storm

flow. Barcelo and Nieber (1982) used pipe flow equations coupled 

with Richards' equation to model the contribution from the soil pipe 

network and that from the soil matrix. The difficulty in this ap

proach arises in defining the soil pipe network, which is very hetero

geneous in the forest environment. Another approach is to modify 

Darcy's equation for turbulent flow. Whipkey (1967) cited several 

of these attempts. The first is to add a second-order term to Dar

cy's equation, 

dH b ,. c1x=aq+ q . •.. (2.1) 

where dH/dx is the pressure gradient, q is the seepage velocity, and 

a and b are constants. In the same manner, a third-order term 

may be added, 
dH 
ax= aq + bq' + cq' .•.. (2.2) 

-20-



where c is an additional constant. Another equation that has been 

postulated is 

dH m ax; aq .... (2.3) 

where m is an exponent between 1 and 2. Equation 2.3 reduces 

to Darcy's equation when m equals 1. The constant, a, then be

comes 1/K, where K is the hydraulic conductivity. All of these 

attempts of adding additional terms or modifying Darcy's equation 

have not been entirely successful. Most were developed using labora

tory data and apply only to specific porous conditions. Therefore, 

general application to highly permeable, shallow forest soil is not 

realistic (Whipkey, 1967). Attempts have also been made to repre

sent turbulent flow ir, porous media based on the correlation between 

Reynold's number and friction factor. However, Whipkey ( 1967) 

quotes Scheidegger ( 1957) as placing little value on this concept. 

The last approach to modeling subsurface stor mflow to be 

discussed here uses Darcy's equation and effective soil parameters. 

For example, if hydraulic conductivity is measured using soil cores, 

the result can be assumed to be the lower limit because the actual 

soil profile is interlaced with macropores and soil pipes, that will 

increase the overall hydraulic response.. Soil parameters, in effect, 

are averaged over the soil profile, removing the heterogeneous nature 

of forest soils and soil structure. 

In this light, the findings by Freeze (1971, 1972) are under

standable considering the slopes and the hydraulic conductivities for 

porous medium flow used. Pilgrim et al. (1978) noted that if the 

porous media flow equations, based on Darcy's equation, are used 

to predict flow, then the appropriate parameters may be radically 

different than those obtained from laboratory tests or what is ex

pected for the soil. On a slope twice as steep as Freeze's model, 

Pilgrim et al. (1978) observed apparent hydraulic conductivities 25 

times greater 

confirmed that 

than Freeze's highest conductivity. Tracer studies 

this rapid flow was through cracks·, root holes, and 
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animal burrows (i.e. not flow through the soil matrix). Their in

strumented slope was no longer forested but many animal and in

sect holes, and decayed root holes of trees and other vegetation 

we re observed. 

Mosley ( 1979) carried out a similar study to that of Pilgrim 

et al. (1978) on a forested watershed in New Zealand with 35% 

slopes. Over land flow did occur in small areas next to the channel, 

but he thought the performance of the whole watershed was con

trolled by subsurface flow. The stream flow and subsurface flow 

hydrograph peaks coincided closely in time. He observed an increase 

of subsurface peak flow with· distance from the water divide and 

concluded that this water was moving considerable distances down

slope. Subsurface flow was extremely sensitive and responsive to 

rainfall intensity. Using tracer techniques, dye travel velocities were 

observed to be three orders of magnitude greater than the matric 

hydraulic conductivity. Discharge emerged from the base of the 

humus and B Horizon layers. Flow above the mineral layer was at a 

velocity between free over land flow and porous medium flow. In the 

A and B Horizons many root holes were observed to provide pathways 

for the move merit of water. When these macropores are greater than 

3 mm in diameter capillary forces are negligible and pipe flow re

sults. The subsurface storm flow was new water, not translatory 

flow, a finding similar to that of Pilgrim et al. (1978). Slow drain

age by saturated and unsaturated flow through the soil matrix ac

counted for delayed flow and hydrograph recession. Storms having 

small amounts of quick flow were dominated by channel precipita

tion, but for heavier storms subsurface stormflow was observed 

throughout entire watersheds. Mosley's watershed had a deeply in

cised channel and only a limited amount of area next to the channel 

where wetlands could develop, so this was a good area to study the 

subsurface flow mechanism. 

2.3 MODELS OF FORESTED WATERSHED RUNOFF 

There are three classes. of models that have been used to 
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study hydrologic processes and systems: physical, analog, and mathe

matical. With the advent of computers and the rapid improvement 

in memory capacity and computation speed, mathematical models 

are now the most commonly used class of models. Mathematical 

models have been classified in a variety of ways. For example, 

Clarke (1973) divided mathematical models into four groups: sto

chastic-conceptual, stochastic-empirical, deterministic-conceptual, 

and deterministic-empirical. Fleming (1979) proposed the classi

fication and subdivisions shown in Figure 2.9. Models of watershed 

response may also be classed as· either continuous or event type models. 

Broadly speaking, deterministic models treat processes as if 

they are part of a determinant system, with no attempt to represent 

the random process that may be present (e.g. Stanford Watershed 

Model); statistical models treat the interrelationships between pro

cesses as governed by the theory of statistics ( e.g. Markov Models); 

and optimum search models attempt to maximize an objective func

tion subject to specified constraints (e.g. multiple reservoir opera

tion models). These types of mathematical models are described 

more completely by Fleming (1979) to whom the interested reader 

is referred for more details. 

MATHEMATICAL MODELS 

DETERMINISTIC STATISTICAL 
I f--~~~~~ 

OPTIMUM SEARCH 
MODELS 

I I 
EMPIRICAL CONCEPTUAL CORRELATION STOCHASTIC I 

I I 
COMPONENT INTEGRATED 
PROCESSES PROCESSES 

LINEAR 
OR 

NON-LINEAR 

LUMPED 
OR 

DISTRIBUTED 

DISCRETE 
OR 

CONTINUOUS 

I 
SYSTEMS 
ANALYSIS 

I 
DECISION 
THEORY 

Figure 2.9 Classes of Mathematical Models (from Fleming, 1979). 
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In recent years the statistical and deterministic type models 

are to some degree being combined. The input parameters of de

terministic models are being characterized stochastically, producing 

a range of responses as output from the deterministic model. This 

approach is better able to model the physical heterogeneity of many 

watersheds. 

2.3.1 Conceptual Models of Watershed Response 

Conceptual watershed models that predict the response of 

an entire watershed range from complex general purpose models 

such as the Stanford Watershed Model (Crawford and Linsley, 1966) 

and its many subsequent modifications, to models with simple soil 

water storage and evaporation relationships. The simple models, 

based on Thornthwaite's (1948) soil-water budgeting . concept, for 

example, usually have monthly time periods ( Federer and Lash, 

1978). An example of this type of model is Haan 's (1972) water 

yield model. 

2.3.1.1 Stanford Watershed Model 

The Stanford Waters_hed Model (SWM) was the first complex, 

process oriented, general purpose digital simulation model developed 

(Carwford and Linsley, 1966). At the time of its development, Hor

ton's theory of runoff generation was generally accepted. The soil 

surface was the primary control in runoff generation by the process 

of infiltration. Cawford and Linsley realized that evidence was be

ginning to show the importance of small source areas in determin

ing watershed runoff, but believed it was due to variations in infil

tration. Their approach then was to develop a cumulative frequency 

distribution of infiltration capacity for a watershed that would simu

late the variations in infiltration and runoff. Crawford and 

Linsley recognized that determining a distribution for forested water

sheds would be difficult, but thought it could be inferred from 

simulation studies. As w.as discussed earlier, this approach is not 

appropriate for steep-sloped forested watersheds, where infiltrability 

is so great it is not a controlling factor. 
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In the Stanford Watershed Model the channel hydrograph is the 

result of the overland. flow hydrograph, the interflow hydrograph and 

the groundwater hydrograph. Interception storage is filled before 

precipitation is added to any other storage. Precipitation on im

pervious areas is routed directly to the stream, while on the rest of 

the watershed it is subject to the cumulative infiltration functions. 

Water is divided into three storages; upper zone, interflow, and over

land flow. Water that does not infiltrate moves toward the stream. 

The interflow component which is added to storage, is simply pro

portional to the local infiltration capacity. Discharge from interflow 

storage is empirically based on a daily recession value and a 15 min

ute time interval. Overland flow is also modeled using an empirical 

relationship for unsteady flow. Water in the upper zone storage is 

routed to the lower zone or ground water 

routed to the stream. Evapotranspiration 

storage which is in turn 

is handled in the same 

manner as infiltration, that is, using a cumulative frequency distri

bution. 

An example of the infiltration capacity· function is shown in 

Figure 2.10. The ratio of an increment added to interflow deten

tion to an increment added to surface runoff detention was deter

mined to range from 0.5 to 3.0. This parameter affects the time 

distribution of runoff and Crawford and Linsley used optimization to 

determine it. 

2.3.1.2 BROOK Model 

Models having a daily time interval lie between the complex 

models, such as SWM and simple models. The Brook model, developed 

for hydrological simulation· of eastern forests is one example (Fed

erer and Lash, 1978). It is a continuous lumped parameter model 

for watersheds less than 200 hectares in area. There are five stor

ages which are for ·intercepted snow, snow on the ground, water in the 
root zone, water in· unsaturated soil below the root zone, and ground-

water. Potential evaporation is determined by using a form of 

Thorntwaite's (1948) empirical relationship. Federer and Lash used 
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a modification by Hamon ·(1963) that allowed evaporation at tem

peratures below 0°C. Evaporation is also corrected for the slope 

and aspect of the watershed. Leaf area and stem area indices were 

used to model the effect of trees on interception, evaporation, 

transpiration and snowmelt. For hardwood trees the leaf area index 

varies over the year. A constant temperature (-2.8°C) was used 

to determine whether precipitation fell as rain or snow. The fol

lowing empirical function was used by Federer and Lash to simulate 

the contribution from variable source areas: 

y = m + nere .(2.4) 

where y is the fraction of precipitation converted to direct runoff, 

m is the fraction of stream area in the watershed, e is the soil 

water content in the root zone, and n and r are constants. 
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Drainage from the root zone and below the root zone was 

simplified by assuming homogeneity and ignoring hysteresis. Then, 

if the soil is well above a water table and the gravitational poten

tial controls the flow rate, Darcy's equation becomes, 

Q = K (a) .... (2.5) 

where Q is the drainage rate, and K (a) is the hydraulic conductivity 

at the mean water content of the soil, (a). Davidson et al. (1969) 

and Black et al. ( 1970) found this approximation to be valid under 

field conditions. Campbell's equation (Campbell, 197 4) was used to 

represent the unsaturated hydraulic conductivity - water content 

function. If the soil moisture characteristic can be described in the 

form proposed by Gardner et al. ( 1970), 

b 
h = - g a 

then the relationship proposed by Campbell (1974) is valid, 

K = 9 2b+3 
r 

... (2.6) 

.• (2.7) 

where h is the pressure head, e. is the volumetric water content, 

K is the relative hydraulic conductivity, and g and b are constants 
r 

determined from the soil water characteristic. Drainage from the 

root zone contributes to the unsaturated zone below, that extends 

to the depth of the permanent water table or an impermeable layer. 

Drainage from this zone is modeled in the same manner as the root 

zone. Drainage is divided between interflow and groundwater ac

cretions by a constant. In watersheds without .permanent water 

tables, such as Hubbard Brook where the model was developed, the 

constant is zero - all drainage becomes interflow. To prevent the 

soil water flow equations from failing, time intervals of less than one 

day were required. 

Federer and Lash tested the model on the Hubbard Brook 

watershed in New Hampshire and the Coweeta watershed in North 

Carolina. Six years of record on each watershed . was used for 
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development and calibration. The poorest monthly correlation coef

ficients, as low as 0.1, occurred for high flows in the spring and 

low flows in the summer. Coweeta was easier to simulate because 

there was not as much snow, which removed some error in the spring, 

and the large storage below the root zone contributed to stream 

flow throughout the summer removing some of the low flow error. 

However, biases did occur at Coweeta for interflow due to the crude 

nature of the interflow and ground water algorithms (Federer and 

Lash, 1978); The model was tested on one large watershed but did 

not give good results. 

The most sensitive parameter in the Brook model on these 

two watersheds was the exponenet of the hydraulic conductivity equa

tion: (Equation 2.7) 2b + 3. This constant was determined from 

measured soil properties and was very close to the optimum because 

a 20% increase or decrease lowered the correlation coefficients. 

At Hubbard Brook a 20% decrease in the constant caused an 11% 

increase in the stream flow. Response at Coweeta was similar. 

The exponent of the variable source area equation (Equation 2.4) 

was also somewhat sensitive. Both the depth of the unsaturated zone 

and the fraction of water going to ground water storage affected 

the timing of runoff (but not the volume significantly). 

2.3.1.3 Variable Source Area Simulator (VSAS) Model 

In an effort to meet the need of a hydrological model that 

reflected the actual physical runoff process involved, Troendle and 

Hewlett _ (1979) developed a Variable Source Area Simulator (VSAS) 

for small forested watersheds. Their concept was that instantaneous 

streamflow · is the sum of subsurface flow, precipitation· on channel 

and saturated area and overland flow from virtually impervious areas . 

. . . . (2.8) 

where q is the instantaneous discharge, A1 is the saturated area 

along channels where subsurface water exfiltrates to the stream, 

Az{ t) is the horizontal projected area of saturated areas, A
3 

is the 
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virtually impervious area where Hortonian flow occurs, P(t) is pre

cipitation, Ks is the saturated hydraulic _conductivity, and H is hy

draulic head. 

Equation 2.8 is applied by dividing the watershed into seg

ments and the segments into increments, as shewn in Figure 2.11. 

The soil profile is then divided into layers according to soil proper

ties. A finite difference scheme with a 15 minute time interval 

was used to solve the subsurface flow equations: 

Darcy's equation: q = - K(h) 'l H 

Richards' equation: d:l/dt = 'l [K(h)vH] 

where 'l is a/ax + a/ay + a/az. 

.(2.9) 

.(2.10) 

The unsaturated hydraulic conductivity - water content equation 

used was Green and Corey's (1971), 

K(e) = be ae .... (2.11) 

where a and b are constants. Subsurface water is redistributed in 

this manner: If a lower element cannot accept the flux from an 

element because it is saturated, the water stays in the upper ele

ment and this element increases in water content. When gravity forces 

flow into a saturated element water flows into the element above or 

onto the soil surface. At the end of each interval A 1 and A2 are 

redetermined. Hysteresis was neglected in the above equations. In

terception was based on the work of Helvey and Patrick ( 1965) and 

varied from 1.27 to 2.54 mm for their forested watershed. Since 

Troendle and Hewlett were only concerned with storm events, they 

assumed that evapotranspiration losses were zero. 

Troendle and Hewlett's simulation analysis indicated that the 

greatest water movement occurs in the A and B Horizons and that 

the storm hydrograph is largely controlled by the upper 2-4 m of 

soil. Normally three layers were sufficient to model discontinuities 

in the soil water characteristics and initial water contents. A 38.4 

ha watershed in north-central West Virginia was used to test the 

model. Bore holes and seismic measurements were used to define 
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the soil layers. The major task was in describing the soil config

uration adequately to represent the expanding and shrinking source 

areas for rapid flow generation. The most important initial condi

tion was the distribution of soil water in the hillslope. Troendle 

and Hewlett found that water contents in the lower 25% of the slope 

controlled the rise· to peak and that the recession limb reflected 

moisture conditions in the middle quarter. The upper half of the 

slope made only minor contributions unless daily rainfall was great

er than 100 mm. 

2.3.2 Process Models of Subsurface Flow 

Process models deal with a specific process m the overall 

picture of watershed response, such as overland flow, infiltration, 

stream flow, etc. The following discussion focuses on subsurface 

flow since it is a primary contributor to runoff from the steep for

ested watersheds with which we are concerned. 

2.3.2.1 A Three-Dimensional Flow Model Using Richards' Equation 
and Fmne Difference Techniques 

The results of the mathematical study of Freeze ( 1971) were 

discussed earlier. He developed a model for this study which could 

handle three-dimensional, heterogeneous, isotropic, saturated-unsatur

ated, confined-unconfined flow. Richards' equation, the governing 

equation for saturated-unsaturated flow can be derived from Darcy's 

equation and continuity and is presented in Equation 2.10. Freeze 

solved this nonlinear parabolic partial differential equation by using 

an iterative implicit finite difference formulation and the line succes-

sive over-relaxation technique. In the case of a two-dimensional 

problem a block centered nodal grid is defined and the appropriate 

boundary and initial conditions imposed. Closer spacing of the nodes 

is required at the flux surface and near a stream. The nature of 

the equations causes some problems with convergence. 

2.3.2.2 Two-Dimensional Flow Models Using Richards' uation and 
FJnJte ement ec iques 

Finite element methods were first applied in other areas such 
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as structural analysis and only recently has their usefulness in sub

surface hydrology been exploited. Neuman (1973) was one of the 

first to develop a working model using these techniques. The model, 

UNSAT2, was further modified to handle layered hillslopes. Mohsen

isaravi (1981) used this model to investigate subsurface flow on an 

Idaho watershed. He found saturated hydraulic conductivity to be 

the most sensitive parameter while the unsaturated properties did 

not make much difference. To duplicate the measured hydrographs 

the saturated hydraulic conductivity had to be calibrated for· each 

year of record. The conductivities varied by up to a factor of eight. 

There was some disturbance on the watershed during the time of 

study by logging and fire. Mohsenisaravi believed that for steep for

ested watersheds with highly permeable shallow soils nonlaminar flow 

theory may need to be incorporated to properly model the processes. 

He found that saturated hydraulic conductivities determined from 

some samples would most likely underestimate the actual value. These 

findings are consistent with those of Pilgrim et al. (1978), and others, 

described earlier. 

Nieber (1979, 1982) also developed a finite element model 

for predicting hillslope runoff. Making the assumptions of Darcian 

flow, a homogeneous and isotropic soil, that air in the soil is at 

atmospheric pressure, noncapillary pores are absent, and deep per

colation is absent; one arrives at Richards' equation: 

ae C(h) aH =..2.....[K(h)aH1 +-a-[K(h) aa1 ~ = at ax ax az az ...• (2.12) 

where h is the capillary pressure, e is volumetric water content, 

C(h) = a e/ah (the specific water capacity), H = h + e, e is the 

gravity head, and x and z are distances in the horizontal and vertical 

directions, respectively. C and K are strongly dependent on h, for 

which Nieber used expressions proposed by Verma and Brutsaert 

(1971): 

C(h) 
mABhB-l 

= (A+h8 )• 
..•. (2.13) 
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•... (2.14) 

. where ·m is the effective porosity, Ks is the saturated hydraulic con

ductivity, and A, B, and N are constants determined from the soil 

moisture characteristics of the soil. 

For his simulations, Nieber (1979, 1982) used drainable poro·

sity for m, ,where drainage was assumed to cease at some arbitrary 

point, i.e. field capac1ty. Since he was simulating drainage from 

a laboratory soil trough using mason sand as soil, this assumption 

may be appropriate. However, for this study m is defined as the 

effective porosity, 

m = a - a s res .... (2.15) 

where as is the saturated water content and a res is the residual 

water content at which further water cannot be removed by suction. 

It is assumed that a = 0 for the remainder of this study. When res 
effective porosity, rather than drainable porosity is used, the Verma 

and Brutsaert equations are compatible with other approximations, 

such as those of Campbell (1974) and Gardner et al. (1970). 

The finite element approach was applied to the space domain 

and a fully implicit backward finite difference scheme was used 

to descretize the time domain. The global function residual was 

minimized by using 

weighted residuals. 

the Galerkin procedure which is a method of 

Nieber used linear triangles as finite elements, 

whereas Neuman used linear rectangles. When boundary and initial 

conditions are applied the equations can be solved. At each time 

step the flux nodes are checked to see if the saturated zone has 

reached the surface causing a Dirichlet boundary condition. 

Nieber tested his model against previous mathematical solu

tions and laboratory data. Adequate representation of transient satu

rated-unsaturated flow in the laboratory was achieved only after 

hysteresis was taken into account. The model did best under wet 

conditions, in which the soil water content was greater than about 

30% by volume. 
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2.3.2.3 A Flow Model Using the One-Dimensional Richards' Equation 

Mulitdimensional finite difference and finite element subsur

face flow models such as those developed by Freeze, Neuman, and 

Nieber are rather expensive to operate and detailed data is required 

. to describe an actual watershed. Thus, these models are limited 

largely to research applications and are .beyond the range suitable 

for most practical problems. Simple models for routine solutions 

would be more appropriate, while the more exact solutions could 

be used to test these approximate solutions (Nieber, 1982). To meet 

the need of simpler solutions Nieber (1982) developed a one-dimen

sional model using Richards' equation. 

If it is assumed that there is no flow normal to the hillslope 

gradient, Equation 2.12 becomes one-dimensional and reduces to: 

C(h)D~~= :x [K(h)Dcos•«:~1 .. (2.16) 

where « is the angle of the impermeable bed, and D is the soil 

depth. The boundary and initial conditions are: 

Seepage boundary: h=O and H=e 

No flow boundary: aH/ax = 0 

Initial condition: H = H(x,t=O) 
0 

Because of the one-dimensional assumption, infiltration cannot be 

handled directly. Nieber used the concept of piston flow to model 

the delay in lateral flow caused by the available storage in the soil 

profile. Water infiltrating at a constant rate, I , increases the water 

content so that, 

... (2.17) 

where e I is the water content in the transmission zone behind the 

wetting front. e 1 is calculated using Equation 2.17 and the known 

soil water characteristic curve. The available water storage in the 

profile is then e 1 - e. An advance rate of the wetting front, V, can 

be calculated, 

v = I/(e 1 - e) ..•. (2.18) 
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Lateral flow is initiated when the impermeable base is reached which 

occurs at time T, where 

T = D/v. .... (2.19) 

Since Nieber assumed no flow normal to the slope, hydrostatic condi

tions exist and thus the velocity of the wetting front increases with 

depth. Integration is required. After rainfall ceased, Nieber assumed 

that drainage occurred at the same rate until all or some of the 

storage was depleted. Another option would be to have the drain

age rate a function of storage, as is often assumed in many concep

tual watershed models. 

Nieber used the same method of solution for the one-dimen-. 

sional model that he used for his two-dimensional model. The 

one-dimensional solution was then compared to the two-dimension-

al model. He found that the one-dimensional model gave higher 

drainage rates at small times, but approached the two-dimensional 

solution at large times. Nieber believed that the difference was due 

to the violation of the hydrostatic pressure assumption. Figure 2.12 

illustrates this point with results from the two-dimensional model. 

TIME = 0.00001 MINUTES 

TIME= 684.49 MINUTES 

0.15 \o.20 0.25 0.30 0.40 0.44 0,4' 

0.10 -------------------\.. -- --

Figure 2.12 Hydraulic Pressure Head Distribution, for a Hor
izontally Draining Bed, Predicted by Nieber's 
2-D Model (from Nieber, 1982). 
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This error decreases as the slope of the soil bed is increased. 

The one dimensional solution converges to the two dimensional case 

more quickly because the two dimensional effect near the outflow 

is not as great (Figure 2.13). 

Figure 2.14 presents hydrographs predicted by the different 

models. The effect of- the infiltration model is shown. Delay A 

allowed drainage to 

water was depleted. 

occur at the same rate as q until all stored 

Delay B allowed only 63% of the stored water 

to drain. This proportion was estimated from the two dimensional 

results. 

2.3.2.4 One-Dimensional Flow Using the Modified Boussinesq Equation 

Nieber (1982) also evaluated a simpler model that used the 

familiar Boussinesq equation. Flow in the unsaturated zone was neg

lected and it was assumed that the flow lines were parallel to the 

impermeable bed and that the flux rate was proportional to the 

slope of the free water surface. After modifications are made for 

a sloping bed the modified Boussinesq equation results, 

m aH a ~( ) , aH] ,:,-- - =- H - z cos «"- at ax ax s 
.•.• (2.20) 

The results of Nieber's simulation are shown in Figure 2.13. The 

flow rate is significantly affected by the drainable porosity and cap

illarity. Nieber believed the major problems were that unsaturated 

flow was neglected and that the Dupuit - Forchheimer assumptions 

were violated. 

Henderson and Wooding ( 1964), and Childs ( 1971) also studied 

the Boussinesq equation and the modified eq_uation, also known as 

the extended Dupuit - Forchheimer equation. They found the ex

tended or modified equation to give a better approximation than 

the original Boussinesq equation for slopes greater than 20%. By 

using a coordinate system with axes parallel and normal to the im

permeable bed, Equation 2.20 becomes, 

ah a [ ah] . ah C - = K cos« - h- - K sm«--+ at s ax ax s ax ••.. (2.21) 

-36-



I ...... .... 
I 

0.1 

1-0 RICHARDS -z 
:!l; ..... 

oo, r ,.., 
::i!:'. --~, - ed ; o.318 

w 
~ 

6c1;0.IO 

a: 
<{ 
::c 

o.oo, I u 2- D RICHARDS 
~ ~80USSINESQ 

(/) .... ..._ EQUATION 
0 

o.ooooi, 1111:1::I ,,,,,,,,, :1:111111 ::1111:11 ,,,,,,,,, I 

0.01 0.1 1.0 10.0 100.0 1000.0 

TIME (MINUTES) 

Figure 2.13 Drainage Hydrographs, for a Horizontally Draining Bed, Predicted by Nieber 
Using the 1-D Richards', 2-D Richards', and the Boussinesq Equations (from 
Nieber, 1982). 



I ..... 
00 
I 

0.0008 

~ 
0.0006 

z 
::e ..... 

r<> 
::e -
LLI 
(!) 0.0004 
0: 
<( 
:c 
u 
(/) I 
Cl lb. 

0.0002 i 
0 500 1000 

I- D RICHARDS WITHOUT DELAY 

,f\ 
' 

1500 

~ 
" ~1-D 

RICHARDS WITH DELAY (Al 

' 

2-0 
RICHARDS 

1- D RICHARDS WITH 
DELAY (Bl 

' 

""' 

2000 2500 3000 . 3500 4000 4500 
TIME (MINUTES) 

Figure 2.14 HydrographE Predicted by Nieber Using the 1-D and 2-D Richards' Equations, 
With a Bed Slope of 50% (from Nieber, 1982). 



q : K h [ah cos« - sin«] s ax 

where i is the rainfall input. 

•... (2.22) 

2.3.2.5 One-Dimensional Flow Using the Kinematic Wave Equation 

The Boussinesq equations assume that the hydraulic gradient 

is equal to the slope of the free water surface. A further approxi

mation is to assume that the hydraulic gradient at any point is equal 

to the bed slope. Then, 

q:Khsin« s 

K • ah 
- sin« - + s ax 

.... (2.23) 

... (2.24) 

The form of the approximation is of the linear kinematic wave equa

tion. 

Beven (1981) evaluated these approximations with the results 

shown in Figures 2.15 and 2.16. He found the kinematic wave solu

tion to be acceptable for the rising limb of a hydrograph for ;\. < 1.0; 

A being a dimensionless parameter and defined as, 

4 i cos « 
K s1n1 « s 

.. (2.25) 

Beven calculated A for 27 field studies and compared them to a ;\. : 

0.75 (Figure 2.17). For a rainfall rate of one cm/hr, 12 of the stud

ies met the criteria. 

Beven ( 1982) extended this solution to include vertical flow 

in the unsaturated zone (i.e. wetting and drying fronts) and non-

homogeneous, but uniformly varying, soil conditions. 

is discussed more fully in Section 5.2.3. 
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CHAPTER 3 

EXPERIMENTAL SITE DESCRIPTION AND DESIGN 

In steep-sloped forested watersheds animal burrows, root holes, 

and nonuniform and layered soils can significantly alter the response 

of a watershed over what would be expected from a uniform "ideal" 

watershed. Subsurface flow for the ideal case is considered in Chap

ter 5 of this report. The objectives of the field study were to: 

( 1) identify the primary mechanisms of runoff generation on 
a steep-sloped forested watershed; 

(2) quantify the principal components of runoff generation; 

(3) develop and test a continuous conceptual model of water
shed runoff from steep-sloped forested watersheds; and 

( 4) compare three subsurface flow models based on their ability 
to predict storm flow for individual precipitation events 
on a steep-sloped forested watershed. 

3.1 DESCRIPTION OF SfUDY AREA 

The study was conducted at the University of Kentucky's Robin

son Forest Substation in the Eastern Mountain and Coal Field region 

of Kentucky (Figure 3.1). The research forest consists of approxi

mately 6,000 hectares ( 15 ,000 acres) of reforested land, and is lo

cated primarily in Breathitt County, Kentucky. The forest was log

ged prior to being donated to the University of Kentucky in 1923, 

and since then has remained virtually undisturbed. The study was 

conducted using data obtained from the Little Millseat and Field 

Branch watersheds, and a small test plot located near their con

fluence (Figure 3.2). 

The Little Millseat and Field Branch watersheds are 81.7 ha and 

40.5 ha in area, respectively, and are characterized by steep slopes 

and narrow valleys (Figure 3.2). For example, the hillslopes and the 

channel slope of the Little Millseat watershed average about 42% and 

6%, respectively (Nuckols, 1982). The soils of these two watersheds 

consist mostly of the Shelocta, Gilpin, DeKalb, Sequoia and Cutshin 

soil types (Smith, 1982) and have moderately rapid to rapid perme

abilities (USDA, 1965). The Shelocta-Cutshin series, a cove 
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association, varies in .depth from about 1.22 m to 1.83 m; the She

locta-Gilpin association averages 1.40 m deep; and the DeKalb-Se

quoia series, a ridge top association, is the shallowest with a 1.00 m 

average depth (Smith, 1982). Smith (1982) estimated the average 

weighted soil depth in the Field Branch watershed to be about 

1.07 m, and the average wilting point and field capacity water 

contents to be 12 and 30% by volume, respectively. The average total 

porosity is about 46% by volume. The deepest soils occur along the 

upslope sides of benches and in cove sites, while rock outcrops are 

common along slopes and outslope .edges of benches (Springer and 

Coltharp, 1978). The bedrock is composed of alternating layers of 

sandstones, siltstones, shales, and interbedded layers of coal from the 

Breathitt formation of the Pennsylvanian Age (Hutchins et al., 1976; 

Hanson, 1977). 

The vegetation 

oak - hickory type. 

on the two watersheds is dominated by the 

Cove sites consist of the yellow poplar 

type and ridge tops and upper southwest . exposures are classified 

as shortleaf pine - oak type (Shearer, 1976). Carpenter and Rum

sey (1976) have compiled a complete list of tree species found in 

Robinson Forest. 

3.1.1 Precipitation 

The precipitation pattern for the watershed is typical for this 

area of the United States. Low-intensity, long duration storms pre

dominate during the winter, and high-intensity, convectional storms 

occur in the summer. Precipitation as snow is insignificant and its 

contribution is neglected in this study. The average precipitation 

is 1143 mm and is fairly evenly distributed throughout the year with 

March receiving the greatest and October the least amounts (Hanson, 

1977; Springer, 1978; Nuckols, 1982). 

A weighing-bucket type rain gauge, shown in Figure 3.3, is 

located near the confluence of the two watersheds and the instru

mented test plot (Figure 3.2). It has been operated by the Uni

versity of Kentucky Forestry Department since 1971. 
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Figure 3.3 Seven-Day Continuously Recording Weighing-Bucket 
Type Precipitation Gauge Located Near the Conflu
ence of the Little Millseat and Field Branch 
Watersheds. 
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3.1.2 Runoff 

Curtis (1972) observed that the hydrograph peaks from forested 

watersheds ·near Robinson Forest were sharp, rather than the more 

rounded peaks that have been observed from most forested water

sheds where subsurface stormflow controls runoff. He believed this 

was due to shallow soils, steep slopes, and horizontal, impervious 

bedrock. The "flashy" nature of watersheds in this area was also 

reported by Springer and Coltharp (1978), who used the ratio of 

annual quickflow to total streaniflow volume and flow duration curves 

from the Falling Rock watershed, also located in Robinson . Forest, 

as evidence of this behavior. 

Runoff is less evenly distributed than precipitation, with winter 

and spring having the greatest runoff. Quickflow volumes follow 

essentially the same pattern as stream flow. On the Little Millseat 

watershed mean annual streamflow and mean annual quickflow are 

about 65 and 25% of mean annual precipitation, respectively (Nuck

ols, 1982; Coltharp, 1982, personal communication). On the Little 

Millseat watershed quickflow volumes account for almost one-half 

of the precipitation occurring in the winter, while in the fall and 

summer only 13 to 16% of precipitation is converted to quickflow. 

Nuckols (1982) believed that during the spring, summer, and fall 

the major portion of precipitation was routed through the terrestrial 

system (subsurface flow). In all seasons quickflow runoff consistent

ly accounts for nearly one-half of the total runoff volume per season, 

indicating that channel precipitation and the near-channel precipita

tion-runoff processes must be the primary contributors to stream 

flow for the watershed (Nuckols, 1982). 

Streamflow from the Little Millseat and Field Brnach water

sheds is measured using permanent 3: 1 sides lope, broad-crested 

V-notched weirs, such as the one shown in Figure 3.4. The weirs 

have a 0.9 m rated head, which allows a flow capacity of 4.83 m' /s. 

3.2 DESCRIPTION OF THE TESf PLOT 

Rainfall, soil water content, soil water potential, and water 
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table levels were measured on a regular basis on a hillslope near 

the confluence of the Little Millseat and Field Branch watersheds 

(Figure 3.2). Location of the instruments and a topographic map 

(surveyed by the authors) of the plot are shown in Figure 3.5. 

Preliminary testing of the instrumentation took place in Novem

ber, 1981. The analysis of data only includes the period of record 

from October 27, 1982 through December 1, 1982, because the 

tensiometer system was not completely debugged until then. 

3.2.1 Soil Depths 

The depth of the soil profile on the test plot was determined 

using a portable Bison Signal Enhancement Seismograph, Model 15758. 

The seismic survey method depends on the principle of seismic re

fraction, that elastic waves travel at unique velocities through dif

ferent materials. Time of travel for these seismic waves can be 

related to the thickness and density of the material (Smith, 1982; 

Hobson, 1970; Dobrin, 1960). In order for seismic waves to be re

fracted, velocity must increase with depth, and the layers of trans

mission must be thick enough to allow the wave to be transmitted 

horizontally (Hobson, 1970; Bison, 1974; Smith, 1982). Typical velo

cities are 244 ± 49 mis for the weathered zone, and 792 ± 183 mis 

for an intermediate layer, that could consist of alluvium, clay or 

similar unconsolidated material. Bedrock velocities are greater than 

3050 mis (Smith, 1982; Mangum et al., 1981). 

Smith (1982) conducted a seismic survey of the Field Branch 

watershed as part of a hydrological study there. He compared his 

seismic results to soil depths measured in 21 soil pits and the cor

relation coefficient was 0.76. The deepest soils were at bench and 

cove sites. Shallower soils were found on the ridge tops and steeper 

slopes. Smith (1982) found the average initial velocity to be 244 mis 

(73-520 mis range). On 23 plots an intermediate velocity was found 

that averaged 463 mis (215-812 mis range). The average final vel

ocity was 1615 mis and ranged from 662 to 4572 mis. 

Soil depths for the instrumented test plot were measured using 
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the equipment and methods described by Smith (1982) in 1981. Three 

transects (Figure 3.5) were taken through the plot and the resulting 

soil depth profiles are shown in Figure 3.6. The average initial and 

final velocities were 109 ± 30.8 m/s and 913 ± 734 m/s, respectively. 

The soil pits and the installation of the access tubes and tensio

meters showed that the depth to bedrock was greater than that meas

ured by the seismic survey. Insufficient spacing of the hammer and 

geophone was the primary cause of this underestimation. The depths 

given by the seismic survey are useful, however, since they represent 

the depth to an increase in the bulk density. These levels also cor-

respond to levels with significant 

and are therefore hydrologically 

reductions of hydraulic conductivity 

important. The soil pits tended 

to show that the depth to bedrock decreased upslope, while the seis

mic survey showed that the depth to a major increase in density 

(after the surface layer) did not have the same trend, but was fairly 

uniform for the section surveyed. 

3.2.2 Soil Water Characteristics 

The soil water characteristic, which describes the relationship 

between water content and pressure head of the soil, is required 

for the solution of Richards' equation and the water balance equa

tions. Equations for soil water capacitance, C(h), can be developed 

once these characteristics are known. 

A pressure plate apparatus with compressed nitrogen was used 

to determine the soil water characteristic. A 5 bar and a 15 bar 

chamber were used along with 1, 3, and 15 bar ceramic plates. Sam

ples were saturated for 24 hours and then the required pressure 

applied for 48 hours (until equilibrium was achieved). Water content 

was then determined gravimetrically. 

Disturbed samples were collected at the four locations shown 

in Figure 3.5 using a 37 .5 mm diameter auger. The samples, divided 

into 15 cm increments, were taken to the depth where bedrock, 

hard clay or rock was encountered. Soils of the same type were 

mixed together, clods broken by hand, and sieved through a #8 
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sieve. Water content determinations were then made at pressures 

of 1, 3, 5, 10 and 15 bars. 

It was desired to have the soil water characteristics on a rock

free basis. Since the measured water contents were gravimetric, 

conversion to a rock-free volumetric water content required multi

plication by the rock-free bulk density. This information was deter

mined using the overall bulk densities and rock content values found 

using core samples (Section 3.2.4). The plots of volumetric water 

content versus pressure head were essentially linear on a log-log 

scale. Therefore, Equations 2.6 and 2.7 were used to define the 

soil water characteristic (Moore, 1981). From the pressure plate 

data on the ten soil samples, three slopes and seven intercepts were 

determined (b and g in Equations 2.6 and 2.7), for a total of seven 

different soil water characteristics (Table 3.2). 

Smith (1982) also investigated the soil water characteristics 

of soil on the Field Branch watershed. He determined field capacity, 

which he defined as the water content at 1/3 bar, and wilting point, 

defined at 15 bars, for 21 plots. For the Field Branch watershed, 

Smith (1982) found the rock-free soil water content at 1/3 bar was 

on the average 0.339 for the A Horizon (upper 20 cm), and 0.291 

to 0.370 for the B Horizon. Using the soil water characteristics 

estimated for the test plot, the corresponding water contents are 

0.290 for the A Horizon, and 0.242 to 0.480 for the B Horizon. 

3.2.3 Saturated Hydraulic Conductivity 

In a study of subsurface stormflow the hydraulic conductivity 

is very important. Saturated hydraulic conductivity can be measured 

in the laboratory and then if certian assumptions are made, the soil 

water characteristic and saturated hydraulic conductivity can be used 

together to. arrive at the unsaturated hydraulic conductivity as a 

function of water content (Equation 2.7). 

Eighty soil samples were taken using . a Uhland-type sampler. 

The cores wer.e 76 mm in diameter and 76 mm long. Four soil pits 

were dug to obtain the cores. Their location is shown in Figure 
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3.5. For reasons of practicality, samples were only taken to a depth 

of 1.10 m. By this depth a fairly impermeable layer was encountered 

(which is consistent with the findings from the seismic survey), thus 

making the depth adequate for this study. The cores were placed 

in waxed containers to keep from drying out, and brought back to 

the laboratory to be tested on a contstant head permeameter. De

pending on the soil's hydraulic conductivity, different hydraulic heads 

were used, and deionized distilled water was used for all the tests. 

The head was applied so that water flowed vertically upwards through 

the samples. 

Table 3.1 summarizes the results of the hydraulic conductivity 

tests. The surface layer, 

hydraulic conductivity, as 

the uppermost 15 cm, has the greatest 

was 

hydraulic conductivity were seen 

were observed in Pits C and D. 

expected. 

for all the 

Discontinuities in the 

pits. Impermeable layers 

The 76 mm diameter cores are somewhat limited as far as 

obtaining representative estimates of the hydraulic conductivity. Sam

ples were taken at specific points in a very heterogeneous system and 

the effect of larger soil pipes cannot be measured with these small 

cores. The sampler introduces bias by selecting the easiest place to 

sample, i.e., where there are no, or few, rocks, roots or burrow 

holes. For these reasons, the saturated hydraulic conductivities de

termined using the cores and the permeameter can be viewed as 

the lower limit of saturated hydraulic conductivities in the field. 

Smith (1982) reported similar values of saturated hydraulic 

conductivities for the Field Branch watershed. He used 54 mm dia

meter cores and a constant head permeameter, similar to the one 

discussed above. For the 11 plots included in the Shelocta soil ser

ies (the type most similar to that of the test plot), he measured 

the permeabilities in the A Horizon to average 21 cm/hr (0.76 to 

43 cm/hr range) and 3.05 cm/hr (0 to 8.9 cm/hr range) for the B 

Horizon. 
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Table 3.1 Soil Properties Measured Using Core Samples 

Soil Number Depth Saturated \Vater Bulk Density Rock Con- Saturated Hydraulic 

Pit of Cores (m) Content ( vol./vol.) (g/cm') tent (%) Conductivity (cm/hr) 

A 4 0- .15 .534±.033 1.186±.010** 0.313 9.29 ± 4.37 

3 .15- .30 .452±.017 1.451±.050 2.73 3.24 ± 4.71 
3 .30- .46 .419±.010 1.535±.017 0.572 4.10 ± 4.14 
3 .46- ,61 .434±.024 1.486±.074 0.842 5.40 ± 5.40 
3 .61- .76 .363±.021 1.724±.053 0.650 1.17 ± 1.03 
3 .76- .91 .392±.038 1.673±.098 18.1 3.65 ± 2.13 
3 .91-1.07 .449±.022 1.526±.049 0.676 2.57 ± 1.29 

B 5 0- .15 .561±.021 1.188±.020 0.911 7.81 ± 0.88 

I 4 .15- .30 .502±.026 1.310±.045 1.61 0.841 ± .513 
v, 3 .30- .46 .448±.012 1.540±.049 0.399 0.310 ± .446 v, 
I 

c 4 0- .15 .549±.047 1.133±.077 17 .1 32.10 ± 22.95 
3 .20- .41 .408±.014 1.551±.032 8.08 13.86 ± 13.94 
3 .41- .56 .386±.014 1.577±.028 20.8 16.90 ± 7.17 
3 .61- .76 .354±.008 1.720±.044 22.9 3.81 ± 3.14 
3 .76- .91 .455±.084 1.636±.070 18. 7 2.56 ± 2.38 
3 .91-1.02 .413±.010 1.717±.027 14.7 0.0637± .0654 
2 .99-l.09 .406±.024 1.727±.054 10.5• 0 

D 4 0- .15 .496±.055 1.353±.091 17 .2 6.35 ± 6.66 
3 .15- .33 .432±.053 1.529±.127 5.75 2.95 ± 3.05 
3 .38- .51 .385±.021 1.609±.016 7.85 3.44 ± 2.48 
3 .46- .61 .391±.027 1.613±.052 21.0 3.36 ± 1.29 
3 .61- .76 .388±.016 1.594±.010 19.3 1.96 ± 1.87 
3 .71- .91 .374±.013 1.770±.052 18.2* 0.0592± .0683 
3 .89-1.07 .407±.068 1.812±.106 17.0 0.137 ± .233 

• An impermeable layer 
•• ± one standard deviation 



3.2.4 Bulk Densities 

The same cores used to determine the saturated hydraulic con

ductivities were also used to determine the bulk densities. After three 

replications had been run on the permeameter, the saturated core was 

weighed, oven dried and weighed again, giving bulk density, saturated 

water content, and rock fraction. These results are also shown in 

Table 3.1. It can be seen that densities and porosities correlate some

what with the hydraulic conductivities. The data can also be used to 

differentiate between soil layers wi.th different physical properties. 

3.2.S Significance of Soil and Plot Physical Properties in Relaticn to 
Subsurface Flow on the Test Plot 

All measured physical properties of the soil and the hillslope 

were translated to an imaginary cross section along a flowline passing 

through the center of the test plot. The cross section was divided 

into 11 elements (Figure 3.7) having the soil properties presented in 

Table 3.2. 

The saturated hydraulic conductivities measured in the labora

tory (Table 3.2) show that the upper 15 cm has the highest permea

bility. They are sufficiently high that one would not expect saturation 

from above, Hortonian-type flow, to occur, 

the lower limits of hydraulic conductivities. 

especially since these are 

In the bottom area hy-

draulic conductivity decreases to 2-3 cm/hr and is fairly uniform for 

the depth sampled. Three cores in the bottom were impermeable (Ta

ble 3.1), so thin impermeable layers may be present that do not show 

up in the overall hydraulic conductivities. On the hillslope, however, 

saturated hydraulic conductivities decrease with depth (Table 3.2), and 

an impermeable base was encountered (Table 3.1). 

When digging the soil pits, roots and animal burrows were 

seen that would increase the hydrologic response above that which 

the measured saturated hydraulic conductivities suggest. In the bot

tom area many soil pipes were encountered, such as the one shown 

in Figure 3.8, which was under positive head, since water flowed 
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Table 3.2 Soil Properties by Elements 

Ele- Rock Free Rock Content g• b* Rock Free Saturated Number 
ment Bulk Density (%) Saturated Wat- Hydraulic of 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

• 
•• 

(g/cm') er Content Conducti- Cores 
vity (cm/hr) 

1.147±.112 .61 .0812 3.015 .551±.040** 8.47 ± 2.86 9 
1.353±.069 2.17 .0108 4.115 .487±.032 2.11 ± 3.25 6 
1.443±.086 1.33 .0454 3.015 .461±.036 2.16 ± 3.15 12 
1.541±.166 .64 .0318 3.404 .427±.041 2.36 ± 3.14 12 
1.673±.098 18.1 .0318 3.404 .478±.046 3.65 ± 2.13 3 
1.541±.166 .64 .0318 3.404 .427±.041 2.36 ± 3.14 12 
1.518±.049 .67 .0833 4.115 .452±.022 2.57 ± 1.29 3 
1.147±.122 17.2 .0812 3.015 .631±.088 19.2 ±20.8 8 
1.459±.222 7.23 .1131 3.015 .440±.062 6.75 ± 8.99 10 
1.459±.222 19.9 .1131 3.015 .479±.098 4.37 ± 6.57 18 
1.526±.110 14.6 .1663 4.115 .499±.108 .984± 1.82 11 

Constants in Equations 2.6 and 2.7 
± one standard deviation 

from it for at least 10 minutes. In all pits many tree roots were 

seen in the upper 30 cm layer (Figure 3.9), which appear to break 

up the soil and make it more permeable. After digging through 

the root zone layer for the soil pits on the hillslope, water was 

observed running along the roots and dripping into the pit (Figure 

3.9). This photograph was taken in the fall and there had been a 

light rain approximately 36 hours previously. 

Smith (1982) observed similar properties while digging 21 pits 

in the nearby Field Branch watershed. He believed that the way in which 

these soils responded to precipitation was best described by the var

iable source area concept, and that water movement towards the stream 

was primarily by lateral subsurface flow. The A Horizon with its high 

noncapillary porosity and permeability is a major medium for this rapid 

lateral movement, while the less permeable B Horizon may initiate the 

lateral flow (Smith, 1982). The extent of macropores in all horizons 

and the extensive areas of fractured bedrock suggested to Smith · that 
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Figure 3.9 Extensive Root Network in the Upper 30 cm Layer 
of the Soil Profile on the Test Plot. 
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turbulent flow was also a ma1or mechanism of stormflow. He also 

noted that at the outcroppings of horizontal layers of coal, clay, shale 

and sandstone, water flows and ice formations in the winter are often 

observed. This observation and the movement of leaves and rocks be

low these outcroppings after large storms with high antecedent mois

ture conditions, indicates the exfiltration of lateral subsurface flow 

and the formation of ephemeral stream channels. These mechanisms 

are sufficient to explain the "flashiness" of eastern Kentucky water

sheds (Smith, 1982). 

3.3 INSfRUMENTATION ON THE TESf PLOT 

Rainfall, soil water content, soil water potential and water table 

levels were measured on the hillslope near the confluence of the Little 

Millseat and Field Branch (Figure 3.2). 

3.3.1 ·Rain Gauges 

Four rain gauges were used on the instrumented slope and were 

located at the sites shown in Figure 3.5, which represent sites with 

varying amounts of canopy coverage. Two gauges, RG-1 and RG-2, 

were at stream level, while the other two, RG-3 and RG-4, were up

slope. The rain gauges, designed and constructed in the Agricultural 

Engineering Department shop, are of the tipping bucket type (Figure 

3.10) and were interfaced with a Campbell CR5 data logger with four 

pulse counters. The data logger counted the tips at 30 minute ti me 

intervals. 

Calibration of the rain gauges was carried out in the field be 

dripping one liter of water through the gauges and counting tips. The 

average depth per tip was 0.6 mm. Several times during the course 

of the study they became clogged with leaves and had mechanical or 

electrical failure, but for the most part produced a reliable record 

from April 14, 1982 through December, 1982. 

3.3.2 Soil Water Content 

Soil water content was measured at 15 cm depth intervals in 

access tubes on a weekly basis using a nuclear soil moisture probe. 
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The instrument used was a Troxler Model 3222 Depth Moisture Gauge 

(Figure 3.11) which has a 10 me radiation source containing Ameri

cium-241 and a Beryllium target. Four locations were at stream level 

and the rest were on the hillslope as shown in Figure 3.5. Readings 

were taken at depths ranging from 15 to 132 cm at 15 cm increments. 

Access tube depths varied from 71 to 132 cm. On two occasions the 

source became disconnected from the instrument causing incomplete 

records for those two weeks. In all, over 2600 readings were taken 

from March 26, 1982 through December, 1982. 

Nuclear soil moisture probes should be calibrated for different 

soils to insure correct estimates of water content. To calibrate the 

probe, readings were taken in an access tube and then a soil pit was 

dug along-side the tube to take water content samples. The gravimet

ric water content samples were converted to a rock-free volumetric 

basis by using the bulk density- and rock content data from nearby 

soil pits and appropriate data from Smith's (1982) study. For the 

calibration, volumetric water contents that included rock were used 

because the nuclear probe measures the amount of water in a sphere 

approximately 30 cm in diameter surrounding the probe. 

The nuclear prob_e calculates water contents using an internal 

calibration already programmed into it. The calibration curve is of 

the form, 

. • . .( 4.1) 

where e is volumetric water content, e f is the offset, / is slope, X is 

the ratio of the count to standard count, and the A's are constants 

programmed into the machine. The offset is normally_ set to zero and 

the slope to one, unless changed by the user. The normal procedure 

for calibration is to perform a linear regression on the predicted (as 

measured by nuclear probe) versus the observed (as determined gravi

metrically and converted to a volumetric basis) water contents and 

estimate the appropriate offset and slope. However, after plotting this 

data a fairly large scatter was seen. This is probably due to the he

terogeneous nature of the soil and the inability of the soil cores to 
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Figure 3.11 Troxler Model 3222 Depth Moisture Gauge Used 
to Measure Soil Water Content on the Test Plot 
on a Weekly Basis. 
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adequately represent the average rock contents for the different depths. 

Large rocks near the access tube will cause the observed water con

tent to be greater than the predicted, because the rock content used 

to calculate the volumetric water content does not account for the 

large rock. Similarly, large voids near the access tube will cause the 

predicted water content to be greater than the observed. 

The distribution of the calibration points was fairly evenly dis

tributed about the standard calibration curve (slope=l and offset=O), 

so it was decided not to change the calibration. This was deemed 

appropriate since there did not seem to be any offset, which would 

int reduce the most error. 

3.3.3 Water Table Depth 

The water table depth was measured at the four locations shown 

m Figure 3.5; two at stream level and two upslope. Readings were 

taken weekly in four SO mm access holes from June 12, 1982 through 

December, 1982. 

3.3.4 Soil Water Pressure Head 

Twenty-eight tensiometers (Figure 3.12a) were used to measure 

the soil water pressure head (soil water potential) at the eight loca

tions shown in Figure 3.5. Four locations on the hillslope had three 

tensiometers each. Depths for the 25 mm diameter SO mm porous cup 

tensiometers varied from 15 to 150 cm below the soil surface. Mercury 

manometers connected to the tensiometers enabled measurements . to 

be made visually or automatically using an arrangement described by 

Atkinson ( 1978) (Figure 3.12b). All tubing connections were kept as 

small as possible in order to minimize response times. A nichrome wire 

inserted in the manometer changed resistance as the mercury level 

varied. This variable resistance tansducer became part of a balanced 

circuit and the voltage drop ·across it_ was measured (Figure 3.12b). 

The output, varying form O to 10 mV, was linear for the manometer 

range. The campbell data logger scanned the tensiometers at 30 min

ute time intervals, the same time interval used with the rain gauges. 
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Figure 3.12 Tensiometers Used for Measuring the Soil Water Pressure Head on the Test Plot: (a) In 
Place in the Field; and (b) Schematic Diagram of the Recording Manometer (adapted 
from Atkinson, 1978). 



A combination field and laboratory method was used to cali

brate the tensiometers, with fairly good results. An example of one 

calibration curve is presented in Figure 3.13. The manometers were 

originally calibrated in the Jab, determining a slope and intercept for 

each calibration curve. Once set up in the field, losses in the lines 

and instrumentation change the intercept, but not the slope. By si

multaneously taking a manual reading of the difference in mercury 

levels· and a reading of the voltage output, the correct intercept was 

calculated using the laboratory determined slope. 

Instrument reliability varied greatly from tensiometer to tensio

meter. Some would hold tensions for several months and others only 

a day or less. Poor reliability was caused in part by leaks in the tub

ing connections and the two access ports. Poor contact with the soil 

also caused problems, but was rectified by using a fine sand and silt 

material to seat the porous cups which were having difficulty. Ele

ctrical difficulties also plagued the tensiometers, including ground-loops 

in the system. Tensiometer data were collected from July 28, 1982 

through December, 1982. Ground-loop errors were not fully removed 

until October 20. 
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CHAPTER 4 

A DAILY MODEL FOR PREDICTING RUNOFF 
FROM SMALL APPALACHIAN WATERSHEDS 

Within Kentucky, 116 daily-read stream-gauging stations, 123 crest 

stage, and 102 low-flow partial-record stations are maintained by the 

U.S. Geological Survey (1981) and other Federal and State agencies. 

In addition, a limited number of gauging stations are maintained for 

special purposes; for example, by the University of Kentucky for re

search. These gauging stations serve to monitor the flow of more 

than 16,000 km of flowing streams in Kentucky and are chiefly con

fined to larger streams and tributaries of the major river basins. It is 

economically impractical to gauge every stream, especially firs_t, sec

ond, and third order streams. 

One cost-effective method of determining the hydrological char

acter of a watershed is via the use of continuous simulation models. 

These models predict watershed discharge (and quality) as either de

terministic or stochastic functions of precipitation and other variables 

that are more readily and cost-effectively measured than discharge. 

In Kentucky, and many other parts of the United States, the majority 

of rainfall and runoff records are held as daily values. Many of the 

questions concerning the baseline hydrological behavior of watersheds 

can be answered using these daily data, or simple models that can 

predict daily streamflow. 

The application and/or evaluation of a number of continuous de

terministic rainfall-runoff models on watersheds in Kentucky has been 

reported, including Haan's Water Yield Model (Haan, 1976), the TVA 

Daily Streamflow Simulation Model (Nuckols and Haan, 1979), and the 

Stanford Watershed Model (Ross, 1970). The complexity of · these 

rainfall-runoff models and their input data requirements vary, the 

internal time step in the model being an important factor. Generally, 

the smaller the time step, the greater the complexity of the model 

and the greater the input data requirements. Haan's model predicts 
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monthly watershed yield and is the simplest of the three models. 

The TVA model (TVA, 1972) predicts daily streamflow, while the 

Stanford model (Crawford and Linsley, 1966) predicts hourly stream

flow. Nuckols and Haan (1979) reported poor results with the TVA 

Daily Streamflow Simulation Model in Kentucky. In tests of rainfall

runoff models of varying complexity, Haef (1981) showed that simple 

models can give satisfactory results. He could not prove that complex 

models give better results than simpler ones. However, he did demon

strate that neither the simple nor the complex models were free from 

failure in certain cases. 

This chapter presents the development and validation of a simple 

continuous rainfall-runoff model, requiring a minimum of input data, 

that is suitable for predicting baseline streamflow from small steep

sloped forested Appalachian watersheds on a daily basis. The model 

was validated on the Little Millseat watershed. 

4.1 DESCRIPTION OF THE MODEL 

The model, schematically illustrated in. Figure 4.1 and mathe

matically formulated in Table 4.1, is a conceptual lumped-parameter 

representation of the rainfall-runoff process. In this model, a water

shed is idealized as consisting of a series of interconnected water 

storages with the in- and outflow representing actual physical pro

cesses. These processes are described using both physically and 

empirically based equations (Table 4.1). The concepts used in the 

model are common to many daily rainfall-runoff models including 

those of BROOK (Federer and Lash, 1978; Federer, 1982), BOUGH

TON (Boughton, 1966, 1968), and MONASH (Porter and McMahon, 

1971, 1976). These 3 models are the basis of the watershed model 

described herein. 

The model consists of three conceptual water stores or zones -

the Interception Zone; the Soil Zone; and the Groundwater Zone -

and has 13 parameters and one function (FCAN) that characterize 

the watershed. Definitions of these parameters are given in Table 

4.2. 
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Figure 4.1 Schematic Flow Diagram of the Daily 
Watershed Model. 
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Table 4.1 Watershed Model Function Descriptions 

FUNCTION 

A 

B 

EQUATION 

CMAX , CEPMAX • FCAN 

RUNOI , PB :l PRECIP 
INFIL, (I-PB) • PRECIP 

PB , FSTP + PC 8PAC o (USIN/USMAX) 

c 

D 

E 

RUN02 , Kl • FFU 
PERCO, (I-Kl)• FFU 

AEVAP , EVAP (EVAP < PE) 

• PE (EVAP > PE) 

EVAP • (USIN • USWP) 
ERATE 

RUN03 , K2 W FFS 

GW,(l·K2)• FFS 

FFS, FS • (SSIN)KS 

FUNCTION SCHEMATIC 

10 

~.e 
u .. 

0 

o.er-------
mo.6 
ll.0.4 

0.2 
o'--------' 

USWP USMAX 

SOIL ZONE ( USIN) 

USWP US MAX 

SOIL ZONE ( USIN) 

- ro .---~---

PROCESS 

INTERCEPTION 

VARIABLE 
SOURCE AREA 
RUNOFF 

SOIL ZONE 
DRAINAGE a 
INTER FLOW 

~ a 1PE•7mm/d SOIL ZONE 
~ a PE•4mm/d EVAPOTRANSPIRATION 

;;:- 4 

~ i '-'--------' 
USWP US MAX 

SOIL ZONE ( USIN ) 

J'~V 
.. 0 . 
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Since snow is an insignificant form of prec1p1tation in eastern 

Kentucky (Springer and Coltharp, 1978), the model does not account 

for snowfall or snowmelt runoff. However, the model could be easily 

modified to include a degree-day approach for representing this pro-

cess. 

Precipitation is added to the interception store, and any excess 

(throughfall) becomes- available for infiltration or runoff from the 

saturated source areas. The capacity of the interception store 

(CMAX) is a function of the 

(CEPMAX) and the degree of 

maximum interception storage capacity 

canopy development (FCAN). CEPMAX 

is dependent on the type of vegetation and the maximum leaf- area 

and stem-area indices, and FCAN reflects the annual canopy growth 

characteristics and stem-area index. The form of the FCAN-time 

relationship is shown in Table 4.1. Evaporation from the interception 

store is assumed to occur at the potential rate. 

The size of the saturated source area increases exponentially 

as the Soil Zone wets up (i.e., as USIN increases). This source area 

consists of the stream area (FSTR) and the near-stream saturated 

zones that expand and contract in response to precipitation. This pro

cess is represented by the empirical equation proposed by Federer and 

Lash (1978) and is represented by Function B (variable source area 

process) in Table 4.1. Overland flow from the saturated source area 

is subtracted from the precipitation excess, and the remainder re

presents the infiltration into the Soil Zone. Infiltration rates in steep

sloped forested watersheds of the Appalachian region are very high and 

traditional Hortonian infiltration (Horton, 1933) rarely occurs. The 

infiltration rates were therefore assumed to be infinite. 

Drainage from the Soil Zone is dependent on the water content 

or water volume of the Soil Zone (USlN) and increases exponentially 

as the water content increases. Campbell (1974) proposed a simple 

method of determining the hydraulic conductivity as a function of 

water content from the soil water retention curve. The method as

sumes that, and is only valid if, the soil water retention function 
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Table 4.2 Model Parameter Descriptions and Values 

Process/Zone 

Interception 

Variable Source 
Area Runoff 

Soil Zone 

Evapot ranspi ra
tion 

Parameter 

CEPMAX 

FCAN 

FSTR 

PAC 

PC 

USMAX 

KU 

FU 

Kl 

USWP 

ERA TE 

Groundwater Zone FS 

OTHER VARIABLES 

KS 

K2 

CMAX 
USIN 
SSIN 
PB 

Defin1tion Parameter Value 
(Little Millseat \Vatershed) 

Maximun1 interception 
capacity (mm) 

2.02 

Canopy deYelOpment func
tion: modifies CEPMAX for 
time of year (i.e. canopy 
development) 

See Table 4.1 

Fraction of watershed always 0.05 (0.05) 
contributing to direct runoff 
(i.e. area of stream) 

Source area exponent 39.295 (40)•• 

Source area coefficient ~.l lxl0-6 

(4.1 x 10-6)•• 
Soil zone thickness (mn1) 1087 { 1070) 

Soil water conductivity ex- 11.810 (11.467) 
ponent (KU=2b+3, where -b 
is the slope of a log-log 
plot of the soil water re-
tention curve) 

Soil water conductivitr coef- l.49x10 7 

ficient 

Fraction of Soil Zone drain- 1.0 (l.O) 
age becoming interflow 

Wilting point water content 
(input as % by volume, used 
as mm of water in program) 

124 ( 130) 
11.44% ( 12.14%) 

Evapolranspiration rate coef- 27.4 
ficient 

Groundwater exponent ( 1 for 
linear groundwater recession) 

Groundwater recession constant 

Fraction of groundwater drain
age becoming baseflow 

Actual interception capacity (mm) 
Actual soil water Yolume (mm) 
Actual groundwater volume (mm) 
Fraction of water contributing 
to direct runoff 

• 

• 
• 

• Groundwater Zone does not exist in the Little Millse:a,t watershed • 

•• 
Values in parentheses are the initial parameter estimates prior to optimization 

Values used in BROOK model (Federer and La.sh, 1978) for Hubbard Brook 
Watershed 
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can be described by the relationship: 

-b h = a 6 
•..• ( 4.1) 

where h is the pressure head, 6 is the volumetric water content 

(USIN/USMAX), and a and b are constants. This form of the equa

tion was proposed by Gardner et al. (1970). This relationship is on

ly valid if the water retention function plots as a straight line on a 

log-log scale. If Equation 4.1 is a valid representation of the water 

retention curve, then Campbell's equation can be used to estimate 

the hydraulic conductivity. Campbell's equation is: 

FFU = FU 6 Zb+3 .(4.2) 

where FFU is the hydraulic conductivity (Soil Zone drainage rate), 

FU is a coefficient, and the other variables are as previously defined. 

The function is the same as the function describing Function C in 

Table 4.1. The water draining from the Soil Zone is divided between 

interflow (Subsurface Storm Flow) and percolation to the Groundwater 

Zone. This division is assumed to be a fixed fraction, K 1, of the 

total drainage, FFU. 

Evapotranspiration from the Soil Zone is limited by either the 

atmospheric demand (potential evapotranspiration) or by the plant 

available water (USIN-USWP, where USWP is the wilting point water 

content). The evapotranspiration is equal to the lesser of either the 

available water divided by a rate constant (ERATE) or the potential 

evapotranspiration (Function D, Table 4.1). In the model potential 

evapotranspiration is estimated from the input daily pan evaporation. 

Many techniques for estimating potential evapotranspiration have been 

proposed (for example; Penman, 1963; Bowen, 1926; Jensen and Haise, 

1963) and could be used if the required input data were available. 

The model is not sensitive to the natural daily variation of potential 

evapotranspiration, but it is sensitive to the long term average evapo

transpiration rates over periods of months and years. 
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Groundwater movement is modeled by a groundwater store with 

no fixed capacity (SSIN). Groundwater recharge occurs by perco

lation from the Soil Zone to the Groundwater Zone. Water is sub

sequently lost from the store as baseflow to the stream (groundwater 

flow) or deep seepage. Deep seepage models the loss of water to 

underlying aquifers and the ungauged water flowing beneath the river 

bed. The normal groundwater storage-discharge relationship used 

in this type of rainfall-runoff model is linear, but Porter and McMahon 

(1976) argue that within many watersheds more than one groundwater 

source or storage exists, leading to nonlinear behavior of the ground

water flow component. A nonlinear discharge function is therefore 

used in the model (Function E, in Table 4.1). The groundwater 

drainage is linearly divided (K2) between baseflow and deep seepage. 

A computer listing of the main computational algorithms of the 

model (subroutines CANOPY and WATER) is presented in Appendix A. 

A complete listing of the program, including input, output, summary, 

statistical analysis, and parameter optimization routines is available 

from the Principal Investigator. 

4.2 RESULTS 

A split-record technique was used to evaluate the rainfall-runoff 

model. One_ section of the 6t years of available record was used 

to calibrate the model (August 1971 to December 1974), while the 

remainder was used to independently evaluate model performance 

(January 1975 to December 1977). The hydrological and meteoro

logical data used by the model and used to validate the model included 

daily precipitation, daily pan evaporation and mean daily streamflow 

for the Little Millseat watershed. The characteristics of the Little 

Millseat watershed and the precipitation and streamflow measuring 

instrumentation were described in Chapter 3. Daily evaporation meas

urements, in the form of pan evaporation data, were obtained from 

Buckhorn Reservoir in Perry County, Kentucky, that is located about 30 

km southwest of the watershed. 
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The input parameters of the model were first estimated from 

the physical characteristics of the watershed described earlier. 

These initial estimates are shown in parentheses in Table 4.2. Indi

vidual parameters and groups of parameters were then adjusted so 

that the predicted and observed hydrographs showed good agreement. 

It was found that a visual comparison of the observed and predicted 

hydrographs, although subjective in nature, was the most effective 

means of optimizing the model's parameters. Finally, the steepest 

ascent method of automatic optimization (Boughton, 1968) was used 

to refine the parameter set. The sum of squares of the errors in 

the daily flows was the objective function for this optimization. 

The final parameter set is presented in Table 4.2. From this table 

it can be seen that the limited optimization produced very little 

change in the parameter set. The main effect of the optimization 

was to modify the peak flows, and determine the appropriate values 

of CEPMAX and FU, for which little information was initially avail

able. An example of the output from the computer program is pre

sented in Appendix A. Included in this output is a summary of the 

input parameters, initial conditions, and the daily, monthly, and an

nual simulated and predicted discharges from the Little Millseat 

watershed for 1976. 

Evaluation of the standard of simulation achieved by a watershed 

rainfall-runoff model is difficult because streamflow provides a large 

amount of data of a range of types (Weeks and Hebbert, 1980), 

and no one test will satisfactorily evaluate all types ( e.g. peak flow, 

low flow, mean flow, etc). Therefore, a variety of statistical and 

graphical tests is presented so that the reader may evaluate the 

model's performance. Many of these statistical and graphical tests 

are described by Aitken (1973), WMO (1974), Moore and Mein (1976), 

and Weeks and Hebbert (1980), and the. reader is referred to these 

citations for more complete details of the methods. 

Tables 4.3 and 4.4 present the annual summary and the opti

daily mization/test 

flow . basis. 

period summaries, respectively, 

Graphical comparisons of the 
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monthly runoff, the residual mass curves for the optimization and 

test periods, and the daily flow duration curves are presented in 

Figures 4.2, 4.3, and 4.4·, respectively. Figure 4.5 presents the an-:

nual hydrograph of the observed and predicted daily flows for 1976. 

This example represents the worst simulation for the test period in 

terms of the coefficient of determination of the daily flows (r' = 

0.724), and the predicted peak flows. 

4.3 DISCUSSION OF RESULTS 

The results show that there is no significant difference in the 

standard of simulation in the optimization and test periods of the 

record. 

The mean flow and the standard deviations of the observed and 

predicted monthly flows are in good agreement on an annual basis 

(Table 4.3) and during the optimization and test periods (Table 4.4). 

Table 4.3 Annual Observed and Predicted Flow Summary 

Year 
Mean Daily F!ow 

(ems x 10- ) 

Oetimization Period 
1971** 1* 8.67 

2 11.88 
1972 1 26.81 

2 24.84 
1973 1 13.43 

2 17.32 
1974 1 27.55 

2 25.97 

Test Period 
1975 1 24.00 

2 24.42 
1976 1 17.26 

2 17.28 
1977 1 18.22 

2 15.43 

• 1 Observed; 2 Predicted 
•• Partial year only (August 

Standard Deviat~on 
(cmsd x 10- ) 

Monthly Daily 

160.3 19.27 
138.9 11.77 
907.3 61.55 
781.7 40.39 
353.6 33.38 
386.5 28.08 
745.0 64.44 
677.7 53.34 

812.1 52.30 
693.6 39.65 
432.0 34.73 
412.9 34.78 
378.5 40.35 
264.5 21.76 

- December) 
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0.619 

0.920 

0.891 

0.956 
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Table 4.4 Statistical Comparison of Model Performance 

Optimization Period Test Period 

Statistic Monthly Daily ~tonthly 

Mean• Obser,ed (a) 636.4 20.89 603.5 

Pred_icted (P) 647.9 21.26 579.8 

Standard Deviation• Observed ( a ) 
0 

686.2 52.40 565 .1 

Predicted (op) 600.6 39.73 490.9 

Coef£icient of Variation Observed ( Cv ) 1.078 2.508 0.936 
0 

Predicted (Cv } 0.927 1.868 0.84i 

Standard Error of Estimates• 

Coefficient of Determination 

Coefficient of Efficiency 

Residual Mass Curve Coefficient 

Coefficient of Variation of Residuals 

Ratio of Relative Error to the Mean 

Maximum Error of Model 

Sign Test 

•All flow values are in cmsd x 10-3 

= r.(ai -a)•) 1/2 
O 

o l n-1 

c, 
0 

SE 

r' 

E 

""a /'e 
0 

a (1 - r')l/2 
0 

[t(a. - a) (P. - P) ]• 
' 1 

r(a. - a)• r(P. - Pl' 
' ' 

t(ei -SP - t(ei - Pi)' 

r(ai - eJ• 

p 
(SE) 169.4 18.4 132.2 

( r' ) 0.920 0.785 0.927 

(E) 0.913 0.769 0.917 

( R) 0.782 0.794 0.868 

(Co) 0.314 1.206 0.266 

(Rm) 0.018 0.018 -0.039 

(K) 

(2) 

0.260 0.734 

3.518 

t (D - D )' - t(D
0 

-

R 0 0 

t(D 
0 

- 0 )! 
0 

c 
0 

=[ t(Pi ~ 0/] 1/2 ie 

t(P. - a.) 

' ' na 

K = c I [(n-l) c' 
o n , 

1 
T 1 ]' 

Observed flow 

P. "' Predicted flow 
1 

0 

0.228 

D )' 

0
0 

• Deparlure from mean for 
observed residual mass curve 

Departure fron, mean for 
predicted residual mass curve 
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However, the standard deviations of the daily flows predicted by 

the model are significantly lower than the observed (Tables 4.3 and 

4.4). For example, the coefficient of variation (standard deviation/ 

mean) of the observed flows are 2.508 and 2.177 for the optimiza

tion and test periods, respectively, whereas those for the predicted 

flows are 1.868 and 1.533, respectively. Hence, the observed flows 

exhibit greater variability than the predicted flows. 

The coefficients of determination (r') of the monthly and daily 

flows are uniformly high, averaging about 0.92 and 0.80, respectively. 

However, neither the mean, standard deviation, or coefficient of de

termination can indicate if there is bias, or systematic errors, in 

the predicted flows. Aitken (1973) indicated that the coefficient 

of efficiency (E) could be used to detect bias. If the coefficient 

of efficiency is less that the coefficient of determination then bias 

is indicated. Table 4.4 shows that in all cases the coefficient of 

efficiency is slightly Jess than the coefficient of determination, in

dicating a small bias in the model. The sign test (Weeks and Hebbert, 

1980; Aitken, 1973) can also be used to detect systematic errors. The 

technique is based on the number of runs of residuals of the same sign 

that the data set exhibits. The expected number of runs is normally 

distributed, and a Chi-square test indicates systematic errors. If the 

magnitude of the norm~lized variate (Z in Table 4.4) is greater than 

1.96, then the number of runs is significantly different from that 

expected for random errors at the 0.05 level of statistical significance. 

Table_ 4.4 shows that I ZI > 1.96 for the daily flows during both the 

optimization and test periods, thus indicating a small amount of bias in 

the model. This finding is consistent with the comparison of the 

coefficients of determination and efficiency. 

Weeks and Hebbert ( 1980) described the maximum error of the 

model statistic (K in Table 4.4) and showed that it can be interpreted 

as being equivalent to a constant error in the results. Table 4.4 shows 

that the maximum error of the model ranges from 23 to 26% for the 

monthly flows and 70 to 73% for the daily flows. As expected, the 
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daily flows exhibit a relatively high error. The, monthly predicted 

and observed runoff (Figure 4.2), the residual mass curve (Figure 4.3), 

and the daily flow duration curves (Figure 4.4) all show very good 

agreement between the predicted and observed flows. The residual 

mass curve coefficient (R) measures the relationship between individual 

flow events (Aitken, 1973). The residual mass curve coefficients are 

reasonable high, averaging about 0.79 and 0.86 for the optimization and 

test periods, respectively. 

During the period of record, 1971 to 1977, the maximum observed 

peak daily flow was 0.837 m' /s,_ and the corresponding peak predicted 

flow was 0.834 m' /s. Generally, however, the extreme peaks were 

underestimated by the model, as is evident from an examination of the 

flow duration curves for probabilities of occurrence of less than about 

1%. Figure 4.5 shows that the hydrograph recessions and the timing of 

the peak flows are modeled very well. These results, plus the steep

ness of the flow duration curves, indicate that the model represents 

the "flashy" behavior of the watershed very well. This "flashy" be

havior is characteristic of the streams in Robinson Forest (Springer 

and Coltharp, 1978), and the Appalachian region in general. 

4.4 CONCLUSIONS 

A rainfall-runoff model was developed for predicting daily runoff 

from steep-sloped forested Appalachian watersheds. The model -was 

validated on the Little Millseat watershed located in Eastern Ken

tucky, using a split-record technique. The initial estimates of the 

model parameters, determined from the physical characteristics of 

the watershed, were very close to the optimized values, indicating 

the physical significance of their values. 

The results show very good agreement between the predicted 

and observed flows, and demonstrate the ability of the model to pre

dict the "flashy" response of the watershed. The statistical and graph

ical comparison of the observed and predicted flows indicate a slight 

bias, or systematic error, in the predicted flows. 
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CHAPTERS 

SIMULATION OF DRAINAGE FROM A SLOPING SOIL BED 

Hewlett ( 1961) and Hewlett and Hibbert ( 1963) constructed 

a series of concrete lined soil troughs filled with a reconstructed 

forest soil ( C Horizon of a Halewood sand loam) to study the drain

age characteristics (subsurface flow) of steep-slope segments of for

ested watersheds at the Coweeta Hydrological Laboratory in western 

North Carolina. These soil troughs were constructed at a slope of 

about 40%, which is similar to the natural slope of the Coweeta wat

ershed. The Coweeta study is of practical interest because it provides 

data that can be used to evaluate the ability of subsurface flow mod

els to simulate porous media flow in a shallow soil overlying a steeply 

sloping impermeable bed. This physical situation is similar to that 

found m many forested watersheds in the Appalachian region. 

Because the soil was mixed and compacted in the bed of the 

soil troughs, the effects of macropores such as root holes, worm holes, 

and animal burrows cannot be evaluated by analyzing Hewlett's data. 

Hewlett's results are not directly applicable to the actual runoff pro

cess in the field, since it has been demonstrated that pipe flow 

through macropores is a significant mechanism in such- cases. The 

comparison is only valid for hillslopes with no macropores, such as 

newly reclaimed lands, or in the analysis of the portion of subsurface 

flow that occurs within and through the soil matrix in steep forested 

watersheds. 

Water movement in homogeneous soils with no macropores is 

the simplest physical subsurface flow system to represent mathemat

ically. Therefore, use of Hewlett's experimental discharge data from 

the instrumented soil troughs at Coweeta (Hewlett, 1961; Hewlett 

and Hibbert, 1963) is a logical place to begin testing and/or develop

ing and validating physically based models of subsurface flow, since 

Hewlett's system represents the simplest "ideal" condition. 
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This chapter examines four classes of subsurface flow models 

(2-D Richards, 1-D Richards, kinematic wave, and simple storage 

models) using the discharge data and soil properties measured by 

Hewlett (1961) and Hewlett and Hibbert (1963) at the Coweeta Hy

drological Laboratory in western North Carolina. These models re

present a range of mathematical sophistication in describing subsur

face flow, with the 2-D Richards model being the most sophisticated, 

and the simple storage models being the least sophisticated. The 

2-D Richards, 1-D Richards, and kinematic wave models were de

veloped by other researchers and are briefly described . in Chapter 

2. Two types of storage models, involving different assumptions were 

developed by the authors for this study (kinematic storage model and 

Boussinesq storage model) and are described in this chapter. 

5.1 THE COWEETA EXPERIMENT 

A series of inclined soil troughs were built at the Coweeta 

Hydrological Laboratory, designed to approximate segments of natural 

watersheds in the southern Appalachians (Hewlett, 1961; Hewlett and 

Hibbert, 1963). Published data from the third soil trough were used 

to evaluate the four types of subsurface flow models. This soil trough 

consisted of a 0.92 x 0.92 x 13.72 m concrete trough constructed on a 

40% slope (Figure 5.1) and was filled with natural soil excavated from 

nearby. Instrumentation included tensiometers, piezometers and access 

tubes for nuclear moisture readings. Outflow was measured using a 

water level recorder in a tank at the base of the trough. The soil 

was soaked using sprinklers, covered with plastic to prevent evapora

tion, and then allowed to drain. 

The physical characteristics of the soil used in the trough are 

shown in Table 5.1. The soil water characteristic curve measured 

by Hewlett ( 1961) is presented in Figure 5.2. Three approximations 

of the measured soil water characteristic are also plotted in this 

figure, and these will be discussed later. 
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Figure 5.1 Physical Layout of Hewlett (1961) and Hewlett and 
Hibbert (1963) Soil Troughs, at the Coweeta Hydro
logical Laboratory, North Carolina 

Table 5.1 Physical Characteristics of the Soil Used in 
Hewlett's Trough (from Hewlett, 1961) 

Soil Characteristics 

Bulk density in original position (g/cm') 
Bulk density when packed in model (g/cm' ) 
% water content by weight when packed 
% water content by volume when packed 
% water content by volume at saturation 
% water content by volume under a 
-40 cm pressure head 

% water content by volume under a 
-69 cm pressure head 

% sand* 
% silt* 
% clay• 

Mean 

1.33 
1.35 

18.0 
23.0 
49.0 

36.0 

32.0 
60 
18 
22 

Std. Dev. 

0.06 
0.07 
1.00 
2.10 
1.50 

1.30 

1.60 

• Measured by ·the Bouyoueos method of hydrometer analysis. 
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The discharge hydrograph from the soil trough measured by 

Hewlett and Hibbert is presented in Figures 5.9 through 5.14 (com

pared t<;> the simulation results). Seventy-six percent of the drain

age occurred in the first 5 days, 19% in the next 45 days, and 5% 

occurred in the last 95 days (Hewlett and Hibbert, 1963). The dis

charge hydrograph suggests that saturated flow dominated during the 

first H days to 5 days, and unsaturated flow dominated thereafter. 

Tensiometer data showed that the entire profile was unsaturated by 

the fifth day except for the saturated zone at the outlet. 

In the following analysis it was assumed that steady state con

ditions existed prior to the beginning of drainage. The discharge 

hydrograph, as measured by Hewlett, therefore represents the reces

sion limb of a hydrograph with time measured from the cessation 

of precipitation. 

5.2 DESCRIPTION OF THE SUBSURFACE FLOW MODELS AND 
INITIAL CONDITIONS 

5.2.1 Two-Dimensional Finite Element Models Based on Richards' 
Equation 

A 2-D finite element saturated-unsaturated flow model deve

loped by Nieber (1979) was obtained and applied to the Coweeta data 

described above. The Oak Ridge National Laboratory developed a 

finite element saturated-unsaturated flow model similar to Nieber's 

and used the Coweeta data in the process of validating their model 

(Reeves and Duguid, 1975). The published results of the Oak Ridge 

model simulation are included herein for comparison to Nieber's model. 

5.2.1.1 Oak Ridge Model 

The Oak Ridge 2-D model uses quadrilateral finite elements 

and the Galerkin method of residuals to solve Richards' equation (E

quation 2.12) for transient saturated-unsaturated flow. Reeves and 

Duguid (1975) used a finite element mesh consisting of 612 elements 

and 690 nodes to describe the Coweeta soil trough (Figure 5.3). The 

sand, gravel and rock at the outlet w~ neglected and seepage was 

allowed from a height of 0.46 to 0.53 m on the vertical face AD. 
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Figure 5.3 Finite Element Discretization of Hewlett's Soil 
Trough for the 2-D Oak Ridge Model (from 
Reeves and Duguid, 1975). 
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Figure 5.4 Finite Element Discretization of Hewlett's Soil Tough for 
Nieber's 2-D Model. 
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Seepage was also allowed to occur from the top surface when approp

riate. 

Hydraulic conductivity in the unsaturated region was calculated 

using the form proposed by Gardner (1958), 

K 
K s 

= (h/h )d+l 
c 

••. ( 5.1) 

where he is the critical pressure, and d is the pore size distribution 

index. Both were treated as adjustable parameters. Reeves and Du

guid (1975) determined the soil water characteristic from data gener

ated from the fourth soil trough experiment (Scholl and Hibbert, 1973) 

and fitted a smooth curve to it as shown in Figure 5.2. A saturated 

hydraulic conductivity of 18.75 cm/hr and a saturated water content 

of 55% by volume were assumed. 

To achieve the initial condition, Reeves and Duguid ( 1975) sub

jected the entire profile to heavy precipitation and wetted the entire 

profile to saturation. The profile was then allowed to drain until the 

total volumetric water content was 41%. Hewlett (1961) described this 

as the initial total volumetric water content of a soil trough in a 

previous experiment. 

5.2.1.2 Nieber Model 

The 2-D finite model developed by Nieber (1979) and discussed 

previously in Section 2.3.2.2 was also used to simulate the Coweeta 

study. The finite element mesh used in this simulation is shown in 

Figure 5.4 and consisted of 88 nodes and 144 triangular elements. 

Boundary AB in this figure is the infiltration and seepage boundary, 

while boundaries BC, CD, and AD are no flow boundaries. The re

presentation of the outlet is not as detailed as that used by Reeves 

and Duguid (1975), but since the soil was graded to coarse sand and 

gravel in the horizontal section at the base of the soil trough this 

boundary condition may be more realistic than that used in the Oak 

Ridge simulation. It was assumed that the hydraulic conductivities 
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of the sand and gravel in the horizontal section were much greater 

than that of the forest soil, to that a H/ax = O. 

The Verma and Brutsaert (1971) equations were used for the 

soil water capacitance and unsaturated hydraulic conductivity func

tions (Equations 2.13 and 2.14). The constants A, B, and N in these 

equations (1.76, 0.36, and 14.6, respectively) were determined by fit

ting to the soil characteristic data measured by Hewlett (1961). The 

resulting approximation is shown in Figure 5.2. When validating his 

2-D finite element model, Nieber found that hysteresis was important 

when considering drainage from a soil profile. However, hysteresis was 

not considered in this simulation because the soil trough was wetted to 

saturation before being allowed to drain. Therefore, the drying curve 

of the soil water characteristic could be used without error. If a 

wetting and drying simulation were made, hysteresis would need to be 

considered. A saturated hydraulic conductivity of 16.80 cm/hr, and 

residual and saturated water contents of 0% and 49% by volume, respec

tively, were used (Hewlett, 1961 and Hewlett, personal communication). 

It was assumed that steady state discharge conditions ( 691.4 

t/d/m) were achieved before drainage of the soil profile began. This 

was achieved by allowing precipitation to occur at a rate of 0.21 

cm/hr until steady state was reached. The profile was then allowed 

to drain. 

S.2.2 One-Dimensional Finite Element Model Based on Richards' 

Equation 

Nieber (1982) also developed a one-dimensional finite element 

model which was introduced in Section 2.3.2.3. The linear grid used 

with this model for the Coweeta simulation is shown in Figure 5. 5 

and has 20 nodes. The boundary conditions are the same as those 

used with Nieber' s 2-D model. The nodes are located at the base 

of the profile and hydrostatic conditions are assumed in the direction 

normal to the finite element grid. 

Since hydrostatic conditions are assumed, input ta the saturated 

zone ceases when precipitation ceases. To overcome this problem 
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Figure 5.5 Finite Element Discretization of Hewlett's Soil Trough 
for Neiber's 1-D Model. 
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Figure 5.6 Conceptual Representation of Hewlett's Soil Trough for 
the Kinematic Wave Subsurface Flow Model. 
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a piston flow model of the wetting front and drying was 

in Section 2.3.2.3; however, it was not used here. Two 

presented 

different 

wetting/drying conditions were incorporated into two versions of the 

model; one that assumes an instantaneous input to the base of the 

soil profile (Model A), and another that assumes an input rate that is 

a function of the volume of water stored in the unsaturated zone 

(Model B), i.e., 

I = K(e ) 
r 

..•• (5.2) 

where I is the vertical input rate to the base of the profile, and e 
r 

is the degree of saturation in the saturated zone. This latter con-

dition is a correct assumption if gravity drainage dominates (i.e. 

aH/az = 1). The unsaturated water content was simulated using 

a water balance approach, 

e us 

e v +Lat(i-I) 
USO US O O 

v us 

.... (5.3) 

where e us is the unsaturated water content, V us is the volume of 

the unsaturated zone, i is the precipitation rate, L is the slope length, 

at is the time increment, and subscript "011 denotes the previous 

time step. 

Soil parameters, soil water capacitance and hydraulic conducti

vity functions, and the initial condition used in the simulation are 

identical to those described in Section 5.2.1.2. 

S.2.3 Kinematic Wave Subsurface Flow Model 

The kinematic wave approximation of subsurface flow 

was introduced in Section ·2.3.2.5 (Equations 2.23 and 2.24). Beven 

( 1982) solved the equations for the case where saturated hydraulic 

conductivity and saturated water content decreased with depth. For 

the simulation of the Coweeta study Beven's solution was modified 

for a homogeneous profile (Figure 5.6). 

Beven's (1982) piston flow model was used to simulate the 

movement of the wetting and drying fronts (Equations 2.17, 2.18, 
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and 2.19). Since a uniform initial water ·content, e was assumed, 
0 

the time for the wetting front to reach the base of the profile, tuz' 

is, 

t 
uz 

D = ~ (0 - 0 ) 
I W O 

.... ( 5.4) 

where 6 is the water content at which K(6 ) = i, i is the precipi-w w 
tation rate, and D is the depth of the homogeneous soiL 

Equation 2.23 can be solved by the method of characteristics 

in a manner similar to that used with kinematic overland flow (Beven, 

1982). The set of characteristics can be described everywhere in 

the (x, t > tuz) plane by, 

dx Ks sin "' 
at = (0 -6 ) 

s w 
. • . .( 5 .5) 

where "' is the angle of the impermeable bed to the horizontal, K s 
is the saturated hydraulic conductivity, and 6 is the saturated water s 
content. Prior to steady state being reached at a position along the 

profile, 

dh i = - .... (5.6) 
ut - l6 -6 ) 

s w 

The depth of steady state flow for any point, x, can be found by 

dividing Equation 5.6 by Equation 5.5, 

h _ i(L - x) 
- K sma 

s 

The time to achieve a particular h is, 

(0 - 0 )h s w 
t = + t uz 

.•.. (5.7) 

...• ( 5.8) 

and the time at which steady state is reached, tss' for a particular 

x is found by substitution, 

(0 - 0 )(L - x) 
t (x) - _s_"""K..--w~---
ss 

5
sma + t uz 
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After precipitation ceases it was assumed that input to the 

water table continues at the rainfall rate, i, until the drying front 

·reaches the water table and then input ceases. 

(e - ed) 
= t + s (D 

r I 
- h(x)) ..•• (5.10) 

where tix) is the 

rainfall ceases, and 

to (field capacity). 

time that input ceases at x, t is the time that 
r 

ed is the water content that the profile dries 

After t = tix), dh/dt = 0, since i = 0, and, 

dx Kssino, 

at = (es - e d) 
.•.. (5.11) 

The time at which a particular depth, h(x), reaches the outlet is 

then, 

t = .... (5.12) 

5.2.4 Simple Storage Models 

Finally, two simple storage type models were developed. In 

the first (Kinematic Storage Model) the hydraulic gradient was assumed 

to be equal to the bed slope, as in the kinematic wave approximation. 

In the second (Boussinesq Storage Model) the hydraulic gradient was 

assumed to be equal to the gradient of the. water table. The con

tinuity ( water balance) equation is the basis of both models, and can 

be written as, 

#t=I -q .•.. (5.13) 

or in explicit finite difference form as, 

..•. (5.14) 
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where S is the drainable volume of water stored in the saturated 

zone per unit width, q is the discharge from the profile per unit 

width, [q = f(S)], 1 is the vertical input from the unsaturated zone per 

unit width, and subscripts 1 and 2 refer to the beginning and end of 

the time period, respectively. 

5.2.4.1 Kinematic Storage Model 

Equations 2.23 and 5.2 were used to describe q and I for the 

kinematic storage model. The soil water characteristic was described 

by Equation 2.14. Assuming that the water table is linear between 

the outlet face and the upper boundary (Figure 5.7), 

s = Lh(es - ed)/2 •... (5.15) 

where h is the depth of the water table at the outlet, and L is the 

slope length. The boundary conditions assumed in this case are the 

same as those assumed with the kinematic wave model. By substi

tution, the head at the outlet at the end of time increment tJ. t, can 

be found explicitly by, 

h _ h1 [L (es - ed}/ tJ.t - v]/2 + u 1 
2 - [L (es - e d) l tJ. t + vJ72 

.... (5.16) 

where V is the discharge -per unit cross sectional area, and subscripts 

1 and 2 refer to the beginning and end of the time interval, respec

tively, 

V = K sin"' s 

q = hV 

5.2.4.2 Boussinesq Storage Model 

•. (5.17) 

..•. (5.18) 

In order to develop a storage type model that possessed 
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Figure 5.7 Conceptual Representation of Hewlett's Soil Trough for 
the Kinematic Storage Model. 
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Figure 5.8 Conceptual Representation of Hewlett's Soil Trough for the 
Boussinesq Storage Model. 
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boundary conditions similar to those of the finite element models, 

the water table was assumed to be fixed at the outlet (point B) at 

a height D above the impermeable bed, and inclined at the angle 

necessary to produce the required storage (Figure 5.8). The 

Boussinesq assumption therefore gives discharge as, 

q = D K sinll s 
.... (5.19) 

where ll is the angle of the water table to the horizontal. The volume 

of water stored in the saturated zone is therefore a function of B and 

when B< « - arctan (D/L), 

.( 5.20) 

where S is the drainable volume of water stored in the saturated 

zone per unit width, and « is the angle of the impermeable bed to 

the horizontal. 

5.3 RESULTS 

The results obtained by Reeves and Duguid ( 1975} from the 

application of the Oak Ridge 2-D model to the soil trough described 

in Section 5.1 (see Figure 5.1) are presented in Figure 5.9. The re

sults of three simulations are shown in this figure corresponding to 

three different assumed critical pressure heads (h in Equation 5.1). c . 
A critical pressure head of -30 cm of water gave the best results, 

and this simulation is used subsequently for the comparison to the 

other models. Reeves and Duguid (1975} reported that the Oak Ridge 

model required SOOK bytes of core storage and took 16.5 minutes of 

CPU time to simulate 13.5 days of drainage on an IBM 360/91 com

puter. 

The discharge hydrograph predicted by Nieber's 2-D model 

is presented in Figure 5.10 and is compared to the results from the 

Oak Ridge 2-D model and the measured discharge hydrograph. The 

initial conditions for the two models, described in Section 5.2.1, were 
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obtained in different ways and the assumed saturated hydraulic con

ductivities were also different (18.75 cm/hr and 16.8 cm/hr, for the 

Oak Ridge and Nieber 2-D models, respectively). The drainage pre

dicted by Nieber's 2-D model drops off more rapidly than the Oak 

Ridge hydrograph because water content as a function of pressure head 

(and similarly unsaturated hydraulic conductivity) decreases more rapid

ly using the Verma-Brutsaert equation than that predicted by the Oak 

Ridge approximation, as is shown in Figure 5.2. Nieber's 2-D model 

required approximately 360K bytes of core storage and 13.8 minutes of 

CPU time to simulate 13.5 days of drainage on an IBM 370/165 com

puter (WATAV compiler). 

Two versions of Nieber's 1-D model (Model A and Model B) 

were applied to the Coweeta data, and the results are presented in 

Figure 5.11. The sensitivity of Model B to variations m the assumed 

saturated hydraulic conductivity, K , of 16.8 cm/hr was examined s 
by carrying out additional simulations with K values equal to ± 20% s 
of 16.8 cm/hr. These results are also presented in Figure 5.11. 

Nieber's 1-D model required llK bytes of core storage and 24.1 min

utes of CPU time to simulate 37 .5 days of drainage on an HP-3000 

computer. 

The kinematic wave subsurface flow model results are 

presented in Figure 5.12. The sensitivity of the simulation to varia

tions in K and field capacity,. ad' was examined by carrying out simu-s . 
lations at two field capacities and three saturated hydraulic conduc-

tivities (ad = 0.32 and 0.26 by volume, and Ks = ±20% of 16.8 cm/hr). 

The field capacities of 0.32 and 0.26 correspond to pressure heads 

of -0.059 and -0.34 bars, respectively ~O and-347 cm of water, re

spectively). The initial steady state water table position for the kine

matic wave model is shown in Figure 5.6. This was attained by apply-

ing precipitation at a rate 

runoff of 691.5 t/day/m. 

of 0.21 cm/hr, and yielded a steady state 

The kinematic wave subsurface flow 

model required 3.5K bytes of core storage and 5 seconds of CPU time 
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to simulate 3 days of drainage on an HP-3000 computer. 

The discharge hydrographs predicted by the kinematic storage 

model and the Boussinesq storage model are presented in Figures 5.13 

and 5.14, respectively. The sensitivity of both models to variations 

in K was evaluated by carrying out simulations with K equal to s s 
±20% of 16.8 cm/hr. These results are also presented in Figures 5.13 

and 5.14. The kinematic storage model required 2.7K bytes of core 

storage and 5 seconds of CPU time to simulate 41 days of drainage 

on an HP-3000 computer, while the Boussinesq storage model required 

3K bytes and 14 seconds to simulate 35 days of drainage. 

S.3.1 Comparison of Subsurface Flow Models 

The accuracy of the various models in predicting the observed 

drainage from the soil trough used in the Coweeta study was assessed 

by visual inspection of the drainage hydrographs and the cumulative 

runoff curves, and comparison of the coefficient of determinations 

and timing errors. The discharge hydrogrnphs predicted by each mod

el, for a saturated hydraulic conductivity of 16.8 cm/hr (Oak Ridge 

study used K = 18.75 cm/hr), are shown in Figure 5.15. Similarly, 
s 

the cumulative runoff curves are shown in Figure 5.16. Table 5.2 is a 

summary of the coefficients of determination (r' ), timing errors, 

simulation costs, and core storage requirements for each of the mod

els. 

The simplest model, the kinematic storage model, had one of 

the highest coefficients of determination, while the most sophisticated 

model, the 2-D finite element model, did not do as well. Simulation 

cost for the simple models was negligible, while the sophisticated 

2-D model cost $120 (on WATFIV) to simulate 19375 minutes of drain

age (would cost $30 - $40 if program were run on FORTRAN G). 

The more sophisticated models, the 1-D and 2-D models both based 

on Richards' equation, were the most accurate at the small times 

(0 to 1000 minutes), while the simple storage models were better 

at large times (5000 to 50000 minutes). 
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Model r' • 

Nieber's 0.958 
2-D 
Model A 0.975 
1-D 
Model B 0.973 
1-D 
Kinematic 0.942 
Wave (32%) 
Kinematic 0.880 
Wave (26%) 
Kinematic 0.969 
Storage 
Boussinesq 0.950 
Storage 

Table S.2 Model Comparisons 

Timing Error {%J 
0.75Qp 0.25Q p 

0 -47 

0 -46 

+ 43 -32 

+286 - 3 

+579 +53 

+ 61 -26 

+ 31 -47 

CPU Time 
(sec) 

828 

1440 

5 

5 

5 

14 

Core 
(K bytes) 

133** 

11 

11*** 

3.5 

3.5 

2.7 

3 

* 
** 

Coeff1c1ent of Determination between t=O and t=7000 minutes. 

Additional storage required for the compiler must be added be
fore compiling and executing. The model was run using the 
WATFIV compiler, and a region of 360K was required. Addi
tional storage requirements would be less for a production com
piler. 

*** 22K bytes of storage was required on the IBM 370/165 because 
the IBM machine has 4 bytes/word, whereas the HP has 2 bytes/ 
word. Speed of execution was 400% faster using the IBM 370/165. 

Field capacity water content (% by volume). 

The cumulative runoff curves (Figure 5.16) show that both the 

kinematic wave model and the kinematic storage model overestimated 

the volume of water drained, and the other models underestimated 

the amount of runoff for times greater than 1500 minutes. All 

of the models did well for times less than 800 minutes. The kine

matic wave model had the largest error, because the infiltration mod

el assumes that all water above field capacity is released as the drying 

front progresses. The kinematic storage model, as well as the kine

matic wave model, overestimated the volume of water drained because 

of their different boundary condition. 
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S.4 DISCUSSION OF RESULTS 

S.4.1 Effect of Boundary Condition 

The boundary condition used at the outlet of the sloping bed 

varied according to the model used. The Oak Ridge 2-D model used 

the most detailed and accurate boundary condition, but it may have 

been counter-productive because the soil characteristics were not 

varied to account for the freely draining sand, gravel and rock in the 

horizontal section at the outlet. For Nieber's 1-D and 2-D · models 

and the Boussinesq model a simplified version of the Coweeta boundary 

condition was used that assumed a constant head equal to the soil 

depth at the outlet. · The kinematic wave model and the kinematic 

storage model assumed a constant head at the outlet equal to at

mospheric pressure. For steep slopes this boundary condition is ac

ceptable because in a short distance from the outlet the flowlines are 

parallel to the impermeable bed (Figures 5.17 to 5.19). The similarity 

of hydrographs for the different models shows that results are not 

significantly sensitive to the outlet boundary conditions. 

S.4.2 Transient Water Table Positions 

Transient water table positions predicted by the various models 

are plotted for t=O, 1000, and 3000 minutes in Figures 5.17, 5.18, 

and 5.19, respectively. The steady state water tables (t=O) for the 

two models using Richards' equation and the two models using the 

kinematic wave assumption show very close agreement for distances 

greater than 2 m upslope. The Boussinesq storage model predicted a 

water table that is at about the same slope as the Richards' equation 

models at the outlet. However, 2 m upslope from the outlet it· 

deviates significantly from the predictions of the Richards' equation 

models. At t=lOOO minutes the water tables generated by the com

plex models and the kinematic storage model show good agreement for 

x>3 m. The kinematic wave model overestimated the saturated zone 

depth compared to these. This is due to the piston flow infiltration 

assumed rather than the kinematic assumption being in error. The 
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water table predicted by the Boussinesq storage model is just about 

horizontal by this time and does not extend upslope. Similar results 

are shown for t=3000 minutes. 

For steep slopes, as with the Coweeta soil trough which is 

at 40%, the Boussinesq assumption is not valid. The kinematic wave 

approximation, dH/dx = sin"', however, is accurate upslope from the 

outlet (x>2 to 3 m). 

S.4.3 Effect of Infiltration Model 

Infiltration for the 1-D models and the storage models must 

be estimated using a coupled model. The piston drying front model 

used in the kinematic wave model is not as accurate as the unsatur

ated storage algorithm used for the other models. The simple kine

matice storage model, on the other hand, is a good example of the 

effectiveness of the storage algorithm, because at large times the 

predicted discharge is very close to the observed. Both coupled 

infiltration models tend to overestimate vertical input early in the 

simulation, but the storage model does much better than the piston 

model. A simulation was made with vertical input varying over the 

slope for Nieber's 1-D finite element model, an<l the resulting dis

charge hydrograph was virtually the same as that predicted by Model 

B ( using average vertical input). 

S.S CONCLUSIONS 

Five physically based computer models were evaluated in this 

chapter and results from the Oak Ridge model were included for com

parison. The model parameters are all physically measureable as 

opposed to the parameters in the watershed models described in Sec

tion 2.3.1 and to some extent the watershed model described in 

Chapter 4. Model parameters were estimated from the Coweeta data 

(Hewlett, 1961; Hewlett and Hibbert, 1963), and no optimization of 

parameters was carried out. 

Simple subsurface flow models which make .assumptions compat

ible with the actual process can be as effective as the sophisticated 1-D 
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and 2-D models with much less investment of money and time. The 

kinematic wave model and the kinematic storage model did just about 

as well as the models usmg Richards' equation in predicting the ex-

tent of the saturated zone. When the kinematic wave assumption 

is coupled with the simple infiltration model assuming gravity drain

age the simulation results are very satisfactory for the Coweeta study. 

Although the assumptions in the Bou_ssinesq storage model are not 

valid for steep slopes, as shown by the predicted transient water table 

positions, the model nevertheless did a reasonable job of predicting 

the discharge hydrograph in comparison to the more sophisticated 

1-D and 2-D models. 
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·cHAPTER 6 

TESf PLITT RUNOFF ESfIMATION AND 
EVALUATION OF THREE SUBSURFACE FLOW MODELS 

ON SELECTED EVENTS 

The most reliable and complete · measurements from the test 

plot were obtained during the period extending from October 27, 1982 

to December 1, 1982. Four readily definable rainfall-runoff events 

occurred during this time. 

The precipitation and soil. water storage data are used to 

estimate the hillslope runoff for these events. Three subsurface flow 

models; Nieber's 1-D finite element model (based on Richards' equa

tion), the kinematic wave model, and the kinematic storage model, 

are evaluated in this chapter by applying them to the observed and 

calculated rainfall-runoff relationships for the four events on the test 

plot. These results provide the basis for determining the major runoff 

processes occurring on the test plot hillslope. 

The three models selected for evaluation using the test plot 

data were chosen on the basis of the results from the previous chap

ter ( Chapter 5), in which five process models were applied to the 

Coweeta experiment results. The 1-D finite element model was chosen 

as a representative of the more complex subsurface flow models based 

on Richards' equation. It performed as well as the 2-D finite ele

ment model but was much less expensive to use in terms of computer 

time. Both models were written by Nieber (1979, 1982) and the 1-D 

algorithm is a simplified version of the 2-D computer program. The 

kinematic storage model was selected because its assumptions appear 

to be conceptually correct for steep hillslope subsurface flow. It 

performed as well as the complex models in predicting drainage 

and water table position, but at a fraction of the cost. The kine

matic wave model, based on a solution by the method of character

istics, was the third category of models tested in Chapter 5. It was 

included for completeness, since others (for example: Beven, 1981, 

1982) have recommended it as an appropriate model for subsurface 

storm flow. 
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6.1 TEST PLOT PRECIPITATION AND SOIL WATER CONTENT 
MEASUREMENTS 

6.1.1 Precipitation 

Test plot precipitation was measured on a 30 minute time inter

val using the four tipping-bucket rain gauges described in Chapter 4. 

These gauges performed very well. The records were checked against 

prec1p1tation measurements obtained from a continuously recording 

weighing-bucket rain gauge located just upstream from the test plot. 

Figure 6.1 presents the average of the daily precipitation measured 

by the four tipping-bucket gauges and the daily precipitation record 

obtained from the weighing-bucket rain gauge located at the con

fluence of the Little Millseat and Field Branch watersheds (Figure 

3.2). The data logger was inoperative on the two occasions shown, 

so no rainfall data were collected at those times. The two records 

agree farily well even though two of the test plot ram gauges were 

under the forest canopy. It appears· that at this time of the year, 

November, the canopy does not intercept rainfall to any great degree. 

On November 23, the test plot gauges showed some rainfall, whereas 

the weighing-bucket gauge did not. This difference is probably due 

to timing errors in the weighing-bucket gauge record. The data log

ger, with an internal clock and recording on a 30 minute interval, was 

more accurate in recording the timing of rainfall than the weighing

bucket rain gauge with the drum record. 

6.1.2 Weekly Water Contents: Nuclear Moisture Probe Measurements 

The weekly soil water contents obtained using the nuclear mois

ture probe measure the long-term response of the hillslope. Rapid 

movements of water, such as the movement of wetting fronts, later

al pulses of water moving downslope during runoff events, and rapid 

drainage of the soil profile cannot be seen using a weekly measure

ment interval. Water content profiles for three consecutive weeks: 

November 17, November 24, and December 1, are presented in Figures 

6.2a, 6.2b, and 6.2c, respectively. Inspection of the precipitation ·record, 
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Figure 6.1, shows that November 17 was during a fairly dry period. 

The two following weeks had substantial amounts of rainfall during 

the week preceding the water content measurement. The water con

tent contours were generated using data from access tubes A, B, 

E, J, H, and I (see Figure 3.5 for locations on the test plot). 

The water content profiles show a slow wetting up of the en

tire hillslope in response to precipitation. However, significant water 

content gradients exist in the hillslope profile at all times, even fol

lowing major precipitation events. In Figure 6.2a it appears that the 

soil upslope has undergone drainage. This upslope drainage supplies 

the near stream saturated zone, much like that seen in the Coweeta 

soil troughs and that proposed in Figure 2.1. The response of the 

hillslope to rainfall is shown in Figures 6.2b and 6.2c. Water stored 

in the hillslope increases most significantly during the first week as 

the water content increases uniformly throughout the profile. 

6.1.3 Weekly Water Table Measurements 

The water table position was also measured weekly at the four 

piezometer locations (see Figure 3.5). The depths. of the water 

table during the period of record at the four locations are presented 

in Figure 6.3. This figure shows the response of the saturated zone 

to rainfall, which could not be seen explicitly in the weekly water 

content profiles. 

Piezometer 2, near the base of the hillslope, was the best indi

cator of the extent of the saturated zone, while the water table depth 

at Piezometer 1, near the stream, was fairly uniform. From Figure 

3.5 it can be seen that the ground is fairly flat around Piezometer 1. 

In addition, the surface elevation of the stream does not fluctuate 

greatly in comparison to upslope changes in water table elevation, 

and hence, tends to fix the water table position at Piezometer 1 at 

an almost constant level. On November 19 the saturated zone still 

extended upslope as far as Piezometer 3, 7 days after a 35 mm 

precipitation event. Measurements on November · 24 and December. 1 

show the buildup of the saturated zone in response to two precipita

tion events on November il-22 and November 26-27. 
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6.1.4 Tensiometer Measurements 

As was discussed in Chapter 3, the tensiometer results were 

not as accurate as originally hoped. The tensiometers were designed 

to provide information concerning the rapid response of the hillslope 

to rainfall during rainfall-runoff events. The tensiometer system was 

tied into the data logger, together with the tipping-bucket precipita

tion recording system, and so the tensiometer and precipitation re

cords are in phase with each other. Like the precipitation record, 

tensiometer measurements were made at a 30 minute time interval. 

The soil water pressure heads measured by the tensiometers, 

together with the the soil-water characteristic curves measured and 

described in Chapter 3, provide an estimate of the water stored 

in the hillslope. Hysteresis effects were taken into account in deter

mining the soil water content using Mualem's method (Mualem, 1971, 

1977). Hence, the 30 minute precipitation and soil water content 

measurements (made via the tensiometer pressure measurements) pro

vide the basic data for performing the rainfall-runoff analysis on the 

test plot for selected events. This analysis is described below in 

Section 6.2. 

6.2 RAINFALL-RUNOFF ANALYSIS 

6.2.1 Analysis Procedures 

Since subsurface stormflow is the primary focus of this study, 

the procedure developed for the rainfall-runoff analysis considered 

only the time during which precipitation was falling and immediately 

thereafter. This minimizes the impact of failing tensiometers on 

the storage calculations because the analysis is over a shorter time 

period. 

Runoff from the test plot can be estimated using the water 

balance equation, 

R= P -b.S . . . . ( 6.1) 

where R and P are the runoff and precipitation volumes during the 

time interval, and b. S is the change in storage over the time period. 

For this analysis the time interval was 30 minutes. As noted earlier, 

-123-



t; S is estimated from the tensiometer measurements of soil water 

pressure head. Evapoqanspiration was neglected in the calculations 

because of the short time periods involved. 

As a first trial, this procedure was used by dividing the hill

slope into three layers and letting the water content of each layer 

be a function of the tensiometer reading in that layer. The prop

erties of the layers are presented in Chapter 3. The result for the 

period from October 31 through November 4 is presented in Figure 

6.4. For the dry period, October 31 to November 3, the tensiometers 

show a gradual decrease in storage (i.e. an increase in measured soil

water pressure head) as unsaturated drainage occurs, similar to that 

observed by Hewlett (1961). However, this procedure does not work 

well during a precipitation event, since not all of the tensiometers 

were working, and as the wetting front passed a tensiometer the pre

dicted soil-water storage in the layer increased abruptly. This creates 

a discontinuity or step function response of soil water and negat

ive runoff, which is contrary to the actual physical process. Therefore, the 

runoff calculations must include some estimation of the wetting front move

ment in order to obtain meaningful runoff estimations. 

The wetting front movement was taken into account by develop-

ing a wetting front velocity-depth relationship with 

tion of depth. This was accomplished for each 

velocity as a func-

event 

when the wetting front passed each tensiometer depth. 

by observing 

The velocity 

calculated using the time lag and change in depth was assumed to 

be the velocity i.t the midpoint of that depth increment. The velo

city function was also assumed to be linear between the depth incre

ment midpoints. Using the velocity function and a central difference 

procedure, the depth of the wetting front was calculated at each 

time step (30 minute increments). 

The water content of the wetting front was calculated using 

the tensiometer data and the estimated soil water characteristic for 

that layer. 

Having the change in storage estimated in this manner, runoff 

was then calculated using Equation 6.1. The tensiometers only measure 
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water within the soil matrix and so the analysis assumes that if water 

is not stored in the soil matrix then it is runoff. In other words, 

all water in the macropores is routed immediately to the stream. 

This is not entireely correct, but it is the best estimate possible with 

the instrumentation used. 

6.2.2 Rainfall-Runoff Results 

The rainfall-runoff analysis was conducted on four events in 

1982: November 3-4, November 12, November 21-22, and November 

26-27. The results are shown in Figures 6.5 through 6.8. On inspec

tion of these figures, it can be seen that the hillslope responds very 

quickly to precipitation in each case. This is to be expected if macro

pore flow dominates, and the change in storage in the soil matrix, in

dicated by the tensiometers, does not change rapidly. 

The November 3-4 event (Figure 6.5) was preceeded by a dry 

spell of 8 days, so the first 8-9 mm of precipitation went towards 

satisfying the hillslope deficits. The soil water tension was great 

enough that it could rapidly absorb that much water. After that, 

however, the macropores (root holes, burrows, etc.) became locally 

saturated and runoff began, responding rapidly to prec1p1tation. 

Precipitation for the November 12 event (Figure 6.6) was short 

in duration, but intense. Again, most of the _rainfall was converted 

to runoff. The antecedent water content for the November 21-22 

event (Figure 6.7) was fairly high and the hillslope was primed for 

runoff, since it had rained the two previous days. The analysis shows 

that the soil matrix did not respond to precipitation, so all storage 

and runoff for this event must have taken place in the macropores. 

The November 26-27 event (Figure 6.8) is a small event, like the 

November 12 event, and similar results are observed. In these figures, 

the runoff response that follows the precipitation initially but then 

drops below the precipitation is probably due to a lagging or erroneous 

tensiometer response. 

6.3 EVALUATION OF THREE SUBSURFACE SfORMFLOW MODELS 

The precipitation records for the four rainfall events identified 

above were applied_ to three subsurface flow models. The runoff pre

dicted by each of the models for each of the events was then com

pared to that calculated from the plot data in the rainfall-runoff 
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analysis. The three models are Nieber's 1-D finite element model, 

based on Richards' equation, the kinematic storage model, and the 

kinematic wave model. Precipitation input for the 1.:.0 model and 

the kinematic storage model had a 30 minute time increment, while 

the kinematic wave model used a constant rainfall rate for the storm 

duration, since it is not set up for varying precipitation. 

Three levels of hydraulic conductivity (K ) were used in order s 
to demonstrate the effect of using an effective hydraulic conductivity 

for the hillslope. The baseline hydraulic conductivity is 12 cm/hr 

and is an average for the hillslope profile based on the 7 .6 cm core 

permeameter measurements presented in Chapter 3. As stated in 

Chapter 3 this would be the lower limit for the effective hydraulic 

conductivity. The second level is 120 cm/hr, one order of magnitude 

above the baseline, and the third level is 600 cm/hr, one and a half 

orders of magnitude above the baseline. The high hydraulic conduc

tivities represent quick subsurface stormflow through macropores. 

For comparison, Mosley (1979) calculated an effective hydraulic con

ductivity of 4920 cm/hr on a New Zealand watershed using tracer 

velocities, an effective porosity, and a hydraulic gradient equal to 

the bed slope. 

None of the models used in these simulations took into account 

hysteresis. The version of the 1-D mdoel used in Chapter 5 did con

sider hysteresis when calculating water content and hydraulic con

ductivity, but the version used for the following analysis does not 

include a coupled infiltration model or hysteresis. It was assumed 

that the error introduced by hysteresis was less than the error in 

approximating the soil water characteristic (Equations 2.6 and 2. 7, 

and Table 3.2). 

6.3.1 Kinematic Storage Model 

6.3.1.1 Modifications to the Model 

The kinematic storage model presented in Chapter 5 does 

not allow for surface runoff where the saturated zone reaches the 
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surface, as can be the case when there are high precipitation rates. 

Modifications to account for this were made before beginning the 

test plot simulation studies. However, for th·e four events examined, 

the hydraulic conductivities were high enough and precipitation rates 

small enough so that surface runoff did not occur anywhere on the 

hillslope. 

Surface runoff is easily· accounted for in this model by using 

the same geometry as proposed in Chapter 5 (Figure 5. 7). The water 

table still remains hinged at point D (Figure 5. 7). When the water 

table intersects the soil surface, Equations 5.15 and 5.18 become 

S = [DL + (L - L )D/2] [e - e al s s s 

q = i L + DV s 

. . . • ( 6.2) 

.... (6.3) 

where L is the saturated slope length and the other symbols are s 
as previously defined. 

6.3.1.2 Kinematic Storage Model Results 

The kinematic storage model was initially run with the unsatur

ated storage input algorithm (described in Chapter 5) which was used 

for the Coweeta soil trough simulation. With the model in this form 

the initial water content was determined by letting the hillslope drain 

from saturation for a period equal to the time since the last precipi

tation event. This estimate of the antecedent water content was 

consistent with the unsaturated storage input algorithm, and did 

not give excessive inputs as would be the case if the tensiom eter 

and nuclear probe data were used. However, the resulting initial 

water contents were unrealistically low compared to the measured 

water contents. For example, for the November 3-4 event the aver

age initial water content given by the tensiometer data was 0.335, 

from the nuclear probe data, 0.30, and the simulated water content 

was 0.190 for K = 12 cm/hr (less for the higher hydraulic conduc-s 
tivities). 
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Figure 6.9 presents the results of the simulations for the three 

hydraulic conductivities. For all three simulated hydrographs the time 

lag is excessive and the unsaturated storage input zone dampens out 

the predicted rainfall-runoff relationship. The Coweeta simulation 

showed that the model performed very well for a homogeneous recon

structed soil, where all flow was through the soil matrix. For ac

tual forest conditions, however, the assumptions are not as valid. 

The forest soil profile is interlaced with many macropores .allowing 

quick vertical flow to the impermeable bed or lateral soil pipes. There

fore, in the subsequent discussion it was assumed that there is no 

time delay between precipitation and input. to the base of the hillslope 

profile (saturated zone). 

Figures 6.10 through 6.13 present the results of the kinematic 

storage model simulations where no time delay was used. These re

sults are much better that those in Figure 6.9 where the unsaturated 

storage zone was included. In all cases the simulation improves 

as the hydraulic conductivity is increased. The discharge hydrographs 

show that the timing of runoff is good for the higher conductivities 

and lags only slightly behind the field data. The hydrograph in Fig

ure 6.10 is _an example of this. In all four events the baseline hy

draulic conductivity is not a good estimate of the effective hydraulic 

conductivity. Increasing the hydraulic conductivity by one order 

of magnitude is a substantial improvement as shown by the hydro

graphs and the cumulative runoff curves. Increasing the hydraulic 

conductivity further does not improve the cumulative runoff curves 

very much, but the hydrographs show that the runoff peaks are esti

mated better. 

6.3.2 Kinematic Wave Model Results 

Results for the kinematic wave model are shown in Figures 

6.14 through 6.17. These results are somewhat limited because of 

the assumption of a constant precipitation rate during the event. 

The kinematic wave model uses the piston flow equations (Equations 

2.17 - 2.19) to estimate input to the saturated zone. The initial 
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water contents for all the events were such that the unsaturated hy

draulic conductivities (at the respective initial water contents) were 

greater than the rainfall rate. Therefore, there is no time lag for 

input to the base of the hillslope profile (saturated zone). This is 

consistent with the rainfall-runoff analysis which showed a high re

sponsiveness of runoff to precipitation. 

The cumulative runoff curves show that the greater the hydraul

ic conductivity the better the simulation of runoff. This · occurs be

cause the time lag for routing to the outlet is less at the higher 

conductivity levels. Inspection of the discharge hydrographs shows 

that the model cannot predict the runoff variations during an event 

because of the assumed constant precipitation rate. 

6.3.3 One-Dimensional Finite Element Model Results 

Nieber's 1-D finite element model was tested without the coupled 

infiltration model, because analysis with the kinematic storage model 

indicated that the infiltration model assumption was not appropriate 

for. the conditions encountered on the test plot. 

fore, was applied directly to the base (saturated 

delay. 

Precipitation, there

zone) with no time 

Simulations were made for two events, November 21-22 and 

November 26-27, at the three hydraulic conductivities and with two 

different initial soil-water conditions. The first initial condition as

sumed gravity drainage, that is, no movement of water prior to the 

event. The results of these simulations are shown in Figures 6.18 

and 6.19. The second initial condition used the average antecedent 

water content measured by the nuclear probe. The capillary pressure 

along the entire hillslope was assumed to be equal to the soil water 

pressure head calculated from the water content using the soil water 

characteristic curve. For the 1-D model boundary condition a hori

zontal water table was assumed initially, so the soil water pressure 

head at any point was not allowed to be less than the profile depth. 

To achieve the proper initial condition the profile was then allowed 

to drain until sustained baseflow was achieved. Figures 6.20 and 6.21 

present the results for this initial condition. 
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at Three Saturated Hydraulic Conductivities (K = 12, 
120, and 600 cm/hr) for the November 21-22 ~vent. 
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Figure 6.19 Comparison of Estimated and Predicted Runoff Hy
drographs and Cumulative Runoff Volumes for Nieber's 
1-D Model with the Gravity Drainage Initial Condition, 
at Three Saturated Hydraulic Conductivities (K = 12, 
120, and 600 cm/hr) for the. November 26-27 fvent. 
The magnitude of the negative estimated runoff 
( which can not occur in practice) indicates the poten
tial error in the calculations. This error is reflected 
in the cumulative runoff volume curve at t=900 
minutes. 
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Figure 6.21 Comparison of Estimated and Predicted Runoff Hy-
drographs and Cumulative Runoff Volumes for Nieber's 
1-D Model with the Nuclear Probe Water Content Init
ial Condition, at Three Saturated Hydraulic Conduc
tivities (K = 12, 120, and 600 cm/hr) for the Nov
ember 26-27 Event. The magnitude of the negative 
estimated runoff ( which can not occur in practice) 
indicates the potential error in the_ calculations; This 
·error is reflected in the cumulative runoff volume 
curve at t=900 minutes. 
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The simulation using the second initial condition for the Novem

ber 26-27 event and K = 12 cm/hr shows a sustained baseflow which 
5 

is about 72 fl./day/m. As the hydraulic conductivity is increased, how-

ever, this initial condition loses its importance to the overall simu

lation. The baseline hydraulic conductivity is appropriate for the 

soil matrix, which carries baseflow, while the higher effective hydraul

ic conductivities are applicable only to. quick flow through macropores. 

So, as expected, the baseline hydraulic conductivity does well for 

long-term drainage,_ while the higher hydraulic conductivities do bet

ter during the storm. However, while giving better storm predictions, 

these high conductivities yield erroneous long-term baseflow results. 

6.:4 DISCUSSION OF RESULTS 

The extensive review of literature dealing with the hydrology 

of steeply sloping forested watersheds in humid regions suggested 

that overland flow 1s a rare occurrence in these areas. Field obser

vations and measurements made at Robinson Forest in eastern Kentucky 

support this conclusion. For the period of data collection, March 

through December, 1982, evidence of Hortonian overland flow was 

never observed. However, exfil tr at ion of subsurface storm flow and 

precipitation on saturated areas did appear to occur along ephemeral 

channels and rock outcroppings. 

The measured surface hydraulic conductivities were high enough 

that one would not expect saturation from above to occur except 

in isolated areas and on rare occasions of very intense rainfall. A 

network of soil pipes consisting of roots, decayed root holes, and 

animal and insect burrows were observed in the field which increased 

the overall effective hydraulic conductivity. Runoff simulations veri

fied this because the greater hydraulic conductivities did better at 

simulating runoff, particularly the storm flow peaks. For these reasons 

it can be concluded that subsurface stormflow is the primary process 

involved in runoff generation as a component m the variable source 

area concept. 
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The kinematic storage model was the most effective in simu

lating runoff from the test plot. The kinematic wave model has the po

tential for doing well also, if it were modified to accept a varying 

precipitation record. The 1-D model showed trends similar to the 

other models, but did not do as well. 

The understanding of subsurface stormflow can be visualized 

by comparing the kinematic storage model and the 1-D model results. 

The kinematic storage model assumes that the hydraulic gradient is 

equal to the bed slope, much 1 ike uniform flow in open channel hy

draulics. The 1-D model, on the other hand, uses Richards' equation, 

which is based on Darcian flow. 

The 1-D model used · with the gravity drainage initial condition 

gave better results with increasing hydraulic conductivities, like the 

other models. However, it did not do as well as the kinematic storage 

model. This is because the kinematic subsurface flow 

for stormflow through macropores and soil pipes is valid, 

assumption 

while Dar-

cian flow, simulated by the 1-D model, is not. The boundary con

dition used for the 1-D simulations probably also contributes to the 

problem, and the saturated outlet face may not be appropriate for 

hillslopes with quick stormflow. 

The simulations made using the 1-D model and the nuclear 

probe antecedent water contents yielded results similar to the other 

initial condition, except that baseflow was superimposed on the storm 

hydrograph. Therefore, it would appear that models based on Richards' 

equation are applicable to homogeneous soils and hillslopes with no 

macropores or soil pipes, or can. be used to estimate baseflow. 

Subsurface stormflow, i.e. flow through macropores and soil 

pipes, is best described by the kine.matic subsurface flow equations 

and the use of effective hydraulic conductivities. Baseflow, or flow 

through the soil matrix, is best described by Richards' equation (Dar

cy's law) and the matric hydraulic conductivities. 

6.S CONCLUSIONS 

An analysis of the data collected at the Robinson Forest test plot 
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was conducted, including estimation of runoff for four selected events. 

This analysis suggests that the hillslope responds rapidly to precipi

tation and that the shallow soils which are interlaced with macropores 

are the primary reason. Lateral subsurface flow along roots and through 

soil pipes was observed in soil pits dug on the test plot. 

The kinematic wave and kinematic storage mdoels were applied 

to all the selected events, and Nieber's 1-D finite element model 

was applied to two events. For each model three hydraulic conduc

tivities were tested to find the effect of using effective hydraulic 

conductivities in describing sqbsurface stormflow. The kinematic stor

age model gave the best results because it was conceptually the more 

correct, allowing for quick subsurface stormflow through macropores. 

The 1-D model, conversely,- can predict baseflow correctly because 

it uses Richards' equation for laminar flow, which is correct for flow 

through the soil matrix, but not through the macropores. 
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7.1 SUMMARY 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

A simple conceptual, daily-based, rainfall-runoff model was devel

oped for predicting runoff from small, steep-sloped, forested Appala

chian watersheds. The model is based on the ·variable source area 

concept and requires only daily precipitation and an estimate of daily 

potential evapotranspiration, such as pan evaporation, as the basic 

hydrologic and meteorological inputs. The model was tested with 

6t years of observed discharge and meteorological records from the 

81.7 ha undisturbed Little Millseat watershed in eastern Kentucky. 

Three and a half years of records were used for calibrating the 

model and 3 years were used for validation. There was good agree

ment between the observed and predicted daily discharges, and the 

results demonstrate the ability of the model to simulate the "flashy" 

hydrologic response of this type of watershed. 

Five subsurface flow models were compared using existing data 

measured by Hewlett (1961) and Hewlett and Hibbert (1963). The 

experimental set-up consisted of a soil trough filled with a recom-, 

pacted forest soil. The drainage hydrograph for this soil trough re

presents what would be expected from a steep-sloped reconstructed 

homogeneous forest soil. The soil was compacted so no soil pipes 

were present and all flow was through the soil matrix. Darcy's law 

would then be expected to hold throughout the profile and numerical 

models based on Darcy's law should work well under such conditions. 

The five physically .based models tested varied from a 2-D fin

ite element model based on Richards' equation to simple storage models. 

The complexity of the model had no relationship to how well the 

measured hydrograph was simulated, and all did fairly well. For this 

homogeneous soil trough the coupled infiltration model had a large 

effect on the simulation results. 

Three of the numerical m.odels were then tested using prec1p1ta

tion and soil-water data collected from a small test plot in Robinson· 
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Forest in eastern Kentucky. The coupled infiltration relationship for 

the model based on the 1-D Richards' equation and for the kinematic 

storage model was not used after it was found to produce excessive 

lags in the timing of runoff. It was apparent from the runoff data 

that the high surface hydraulic conductivities and macropores allowed 

quick infiltration, and lateral movement of water downslope began al

most immediately following a precipitation event. Increasing the ef

fective hydraulic conductivity improved the simulations, showing that 

the overall response of the hillslope was increased significantly by 

the presence of macropores and soil pipes. 

The simple kinematic storage model gave the best results 

with the high effective hydraulic conductivities. So, not only are 

simple storage models less expensive and easier to n,m than the more 

complex subsurface flow models based on Richards' equation and using 

finite elements, but they can also give better results. The kinematic subsur

face flow assumption is more accurate for stormflow through macro

pores and soil pipes than Richards' equation, which is based on Darcian 

· flow. 

7.2 CONCLUSIONS 

Two general conclusions can be drawn from the field study 

. and computer modeling studies reported herein: 

(1) The primary process involved in runoff generation on 
undisturbed steep-sloped forested watersheds similar to 
those in Robinson Forest is subsurface stormflow as a 
component in the variable source area concept, and 

(2) Simple physically based models can adequately simulate 
runoff from steep-sloped forested watersheds and are 
the most economical to use because of the great heter
ogeneity, the complexity involved in describing a natural 
watershed, and the cost of running computer programs 
of complex models. 

Additional conclusions stemming from this study include: 

(1) Observations in the field (subsurface flow along roots 
and in animal burrows) and computer simulations showed 
the importance of macropore flow in generating storm 
runoff for steep-sloped forested watersheds. The high 
effective hydraulic conductivities determined by the numer
ical analysis demonstrate that rapid water movement 
through macropores does occur (i.e. non-Darcian flow). 
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(2) The rainfall-runoff analysis and simulations showed that 
there are two components of subsurface flow: 

a) Macropore water flow, which is responsible for 
stormflow response on the Robinson Forest water
sheds, and 

b) Soil matrix water flow, which is responsible for base
flow response. 

(3) When the decision is made to use a model based on an 
effective hydraulic conductivity for steep forested water
sheds, simple models, such as the kinematic wave or 
kinematic storage models, are the most effective. 

(4) Results of the simulation comparisons raise questions 
about the process of validating subsurface flow models. 
Complex models are frequently verified by setting up 
a trough in the laboratory and filling it with sand, which 
is an idealized case. Evaluation of the different models 
on the Coweeta data and Robinson Forest data shows 
that the appropriateness of some of the complex Darcian 
flow based models may not extend beyond the laboratory 
at the present time. The complex finite element and 
finite difference models are often cited as being a 
standard against which simpler models can be compared. 
In the field of hillslope hydrology these complex models 
may not be a very good standard for testing or validat
ing other models, since they themselves are quite ideal
ized, and may not be any more accurate than the simple 
models. The basic assumption of Darcian flow used to 
formulate these complex models appears to be questionable 
for subsurface stormflow. 

7.3 SUGGESfIONS FOR FURTHER RESEARCH 

(1) Much work has been done recently dealing with hillslope 
subsurface flow models based on Darcy's law. Since 
it has become widely known that soil pipes and macro
pores are very important on forested watersheds, more -
theoretical work is needed to develop physically accurate 
models which include non-Darcian subsurface stormflow. 

(2) When dealing with subsurface stormflow on steep hill
slopes some direct method of measuring runoff is more 
appropriate than using soil water content and tension 
instrumentation, and relying on a water balance to cal
culate runoff. 

(3) Models based on Darcy's law, such as those discussed 
in this study, may be more appropriate for reclaimed 
lands, which are more homogeneous than natural water
sheds. Field measurements should be made to test var
ious models for their appropriateness in estimating post 
mining (disturbance) runoff. 
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(4) Following from Conclusion 4, a data base of measured 
rainfall and runoff from hillslopes should be developed 
for hillslope model verification, -rather than validating 
by comparing among models. 

(5) Since the kinematic storage model was effective in simu
lating runoff from a forest test plot, the next step would 
be to incorporate it into a watershed model similar to 
that described in Chapter 4. The watershed could be 
divided into subwatersheds according to slope and soil 
characteristics. The kinematic storage model would be 
applied to each, and stream discharge at the outlet would 
then be estimated by using a routing technique. 
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A, a, B, b, c, g, m, N, r 

a 

c 
CEPMAX 

CMAX 

D 

e 

E 

ERA TE 

FCAN 

FS 

FSTR 

FU 
H 

h 

he 
I 

NOMENO..ATURE 

constants 

saturated area along channels where· 
water exfiltrates to the stream 
(VSAS model) 

'Horizontal projected area of saturated 
areas (VSAS. model) 

Virtually impervious area where 
Hortonian flow occurs (VSAS model) 

Slope of impermeable bed to the 
horizontal 

Slope of the watertable to the 
horizontal 

Specific water capacity(=~) 

Maximum interception capacity 

Actual interception capacity 

Soil depth 

Gravity head 

Evaporation volume 

Evapotranspiration rate coefficient 

Canopy development function 

Groundwater exponent 

Fraction of watershed always con
tributing to direct runoff 

Soil water conductivity coefficient 

Hydraulic head (= h + e) 

Pressure head 

Critical pressure head 

Infiltration rate 

Precipitation or rainfall rate 

Hydraulic conductivity 

Saturated hydraulic conductivity 

Relative hydraulic conductivity (= ( ) 
Groundwater recession constant 
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Nomenclature (continued) 

KU 
Kl 

K2 
>.. 

L 

L s 

p 

PAC 

PB 

PC 

Q 

q 

R 

p 

s 

SSIN 

t 

e res 
e s 
8 us 
USIN 

USM AX 

USWP 

Soil water conductivity exponent 

Fraction of Soil Zone drainage 
becoming interflow 

Fraction of groundwater flow 
becoming baseflow 

Hillslope length 

Saturated hillslope length ( 

D. . nl 4i cos") 1mens10 ess parameter = K sm'a 
s 

Precipitation volume 

Source area exponent 

Fraction of watershed contributing 
to direct runoff 

Source area coefficient 

Drainage rate 

Seepage velocity, and 
Discharge per unit area 

Runoff volume 

Slope of calibration curve for the 
nuclear moisture probe 

Drainable volume of water stored in 
the saturated zone 

Actual groundwater volume 

Time 

Time input to the water table ceases 

Time rainfall input ceases 

Volumetric water content 

Offset of calibration curve for the 
nuclear moisture probe 

Residual water content 

Saturated water content 

Water content in the unsaturated zone 

Actual soil water volume 

Soil Zone thickness 

Wilting point water content 
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Nomenclature (continued) 

V,v 

x 

y 

z 

Discharge per unit cross sec
tional area, and 
Rate of advance of the wetting 
front 

Volume of the· unsaturated zone 

Ratio of count to standard count 
of the nuclear moisture probe 

Horizontal distance 

Fraction of precipitation converted 
to direct runoff 

Vertical distance 
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APPENDIX A 

CONTINUOUS DAILY MODEL FOR PREDICTING RUNOFF 
FROM SMALL APPALACHIAN WATERSHEDS 

Appendix A-1 Sample Input Data for the Application of the Daily 
Watershed Model to the Little Mitlseat Watershed -
Test Period. 

L[TTLE MILLSEAT w•TERSHEO • R08[N80N FOQEST KY• TEST PfQilJ 

----~ITTIT'F!·-,---c----,------·---4- ----5"·· - ---&- ---,----i,--;r---ro·- - 11 12 

P_•!!_;~_E~-~- _O.b_~ _ -~-~~-o o.&o_ o.&o o.&_n 0.1~ -~--~~- ---~_.eo __ ~~"~ -~o o_._~_s ___ o_. __ ~_!>_ 

--------------------------------------------------------------------------------

r OT IT,rf.{T£R'"5REO AREA = 

- #IfOSHE"OMo·o-EL ·rNPUT PiRA·MrTF.RS . ---- ---- --------
CEP~AJ: 2.02 us~•x: 1087.40 USWP: 11.44 

---·F·u-:-·-(f:,-l·q·ror-·-Kui--1 r~·sro - ,s···= n.oooe oo 
K1 : 1.000 K2 s 0.000 
EAliE: 0.274£ 02 
PAC: 39.2950 PC: 0.411E•05 

--i,··=-o.oT-----···---·--·-- ·· 
CANOPY EXPANSION FACTORS 

---- o·Av-o-,11-1to::·-a,.1;-p·y F ,fCT'OR" : -0 ~ I 5-- -
OAY 151. TO 271. C~NOPY FACTOR: 1.00 

----o-ir"11n1:-ro J&b. tIN'O""P-v -Frrro,r=·-o. rs--· 
--~~-~lt__: O!_!O_~E -~o F.s:r:~ : 0.050 

INITIAL CONOITJONS 
- ·-rNcEP·=- 0.000 USI~ =. 12•.000 
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Appendix A-2 Sample Output from the Watershed Model for 1976: 
Little Millseat Watershed - Test Period . 
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Appendix A-3 Listing of the Main Computational Algorithms of 
the Daily Model for Predicting Runoff from Small 
Appalachian Watersheds. 

SUBROUTINE CANOPY(DAY) 
COftftON/CANOP1/D1,U2,D3,D4,CAN1,CAN2,CONST1 
CCftftON/D!V!S/FCAN,FSTR,FFLOR 
lP(DlY.LE.D1)GO TO 5 
IF(DAY.LE.D2)GO TO 10 
IF (DAY. LE.DJ) GO T·O 15 
IP(D1Y.LE.D41GO TO 20 

S FCAN=CANl 
Gn TO 25 

10 1'CAR=CAN1• (CAN2-CAN1) • (DAY-Dl) / (02-D 1) 
GO TO 25 

15 1'ClN=CAN2 
GO TO 25 

20 l'CAN=C.A N 1 + (CAN2-CA N 1) * (04-DA Y) / (D4-D3) 
25 Pl'LOR=1.0-FCAN-PSTR 

B'FTTJRN 
END 

SUBROUTINE WATER (RAINP, ~TUN). 
COftftON/DIVIS/FCAN,FSTR,FFLOR 
COftffON/PARAM1/INCEP.USIN,SSIN,INCEPI,USlNI,SSINI 
COftflOH/PA.R Aft2/CF.P !"!A'<, US MAX, USWP, PU, KU, FS, KS, K 1, K2, 

1EBAT!,PAC,PC 
COftftON/PARAM3/RPALL1,RUNF,QSOIL1,QSO!L2,QSOIL, 

1A!VlP1,AEVAP2,TROFF,DROFF,GW 
REAL INCEP,KU,KS,K1,K2,INCEPI 
BP1LL1=0.0 
DROFP=O.O 
RUN02=0.0 
RON01=0.0 
PRECIP=FAINF 
EVAP=ETRAN 

C ••••• WETTING CYCLE-INTERCEPTION ***** 
IF(PRECIP.EQ.o.o,~o TO 5 
INCEP=INCEP+PRECTP 
PRECIP=O.O 
CM!X=CEP~AX*FCAN 
!F(CftAX.GE.INCEP)GO TO 5 
PRECIP=tNCEP-CftAX 
INCEP=CftAl 
R1'1LL1=PREC!P 

5 lUC=0.2 
PRECIP=PRECIP*AINC 
RON01=0.0 
RITN02=0.0 
QSOTL 1=0. 0 
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Appendix A-3 (Cont.) 

OSOIL2=0. 0 
GW=0.0 
DO 50 I= 1, 5 
IP(PRECIP.LE.O.O)GO TO 40 

C *****PARTIAL AREA RUNOFF***** 
PA=PC*EXP(PAC*USIII/USHAX) 
PB=Pl+PSTR 
PB=AHIR1 (PB, 1.0) 
PA=PB-PSTR 
RUR01=RUN01+PA*PRECIP 
RUN02=PSTR*PRECIP+RUN02 

C *****WETTING CYCLE-OPPER SOIL ZONE***** 
USIN=USIN+PRECIP*(1.0-PB) 

C *****DRAINAGE CYCLE***** 
40 FFU=O.O 

IF(USIII.LE.1.0)GO TO 42 
PPU=FU*((USIN/USMAX)**KU)*AINC 

42 IF(USIN.LE.FFU)PPU=USIN 
QSOIL 1 =QSOIL 1 +FPU *K 1 
RFlLL=FFU*(1.0-K1l 
USIN=USIN-PFU 
IF(K1.EQ.1.0)GO TO 50 
SSIN=SSIN+RF'ALL 
Pl'S=O.O 
IF(SSIN.LE.1.0)GO TO 43 
PPS=PS* (SSIN**KS) *AIIIC 

43 IF(SSIN.LE.PFS)FFS=SSIN 
QSOIL2=QSOIL2+FPS*K2 
GV=GW+FFS*(1.0-K2) 
SSIN=SSIR-FPS 

50 CORTIHUE 
C ***** EVAPORATION-TRANSPIRATION CYCLE***** 
C ***** INTERCEPTION EVAPORATION AT POTENTIAL RATE***** 
8 AEVlP1=0. 0 

INCEP=INCEP-EVAP 
IP(INCEP.LT.0.0)GO TO 10 
AEVAP1=EVAP 
GO TO 15 

10 AEVAP1=EVAP+INCEP 
INCEP=O.O 

C ***** EVAPOTBASPIRATIOW FP.O" UPPER SOIL STORE***** 
15 AVW=USIN-USWP 

C1=0.0 
IP(AVW.LE.0.0)GO TO 25 
C l=lVW/ERATE 
IP(C1.GE.EVAP)C1=EVAP 

25 USIN=USIN-C1 
AEVlP2=C1 

C ***** SUMftARY AMO ACOUNTING ***** 
llROFF=RUII02 
RUNP=RUN01 
QSOIL=QSOIL1+QS0It2 
TROPP=RUNF+QSOIL+DROPF 
BET URN 
END 
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