11,413 research outputs found

    Comparison of Canonical and Grand Canonical Models for selected multifragmentation data

    Get PDF
    Calculations for a set of nuclear multifragmentation data are made using a Canonical and a Grand Canonical Model. The physics assumptions are identical but the Canonical Model has an exact number of particles, whereas, the Grand Canonical Model has a varying number of particles, hence, is less exact. Interesting differences are found.Comment: 12 pages, Revtex, and 3 postscript figure

    Probing nuclear symmetry energy with the sub-threshold pion production

    Full text link
    Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we investigated the effects of symmetry energy on the sub-threshold pion using the isospin MDI interaction with the stiff and soft symmetry energies in the central collision of 48^{48}Ca + 48^{48}Ca at the incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively. We find that the ratio of π/π+\pi^{-}/\pi^{+} of sub-threshold charged pion production is greatly sensitive to the symmetry energy, particularly around 100 MeV/nucleon energies. Large sensitivity of sub-threshold charged pion production to nuclear symmetry energy may reduce uncertainties of probing nuclear symmetry energy via heavy-ion collision.Comment: 5 pages, 5 figures, typo corrections, submitted to Chinese Physics Letter

    Tm3+/Ho3+ codoped tellurite fiber laser

    No full text
    Continuous-wave and Q-switched lasing from a Tm 3+ /Ho 3+ codoped tellurite fiber is reported. An Yb 3+ /Er 3+ -doped silica fiber laser operating at 1.6μm was used as an in-band pump source, exciting the Tm 3+ ions into the F 4 3 level. Energy is then nonradiatively transferred to the upper laser level, the I 7 5 state of Ho 3+ . The laser transition is from the I 7 5 level to the I 8 5 level, and the resulting emission is at 2.1μm . For continuous wave operation, the slope efficiency was 62% and the threshold 0.1W ; the maximum output demonstrated was 0.16W . Mechanical Q switching resulted in a pulse of 0.65μJ energy and 160ns duration at a repetition rate of 19.4kHz

    Statistical multifragmentation model with discretized energy and the generalized Fermi breakup. I. Formulation of the model

    Full text link
    The Generalized Fermi Breakup recently demonstrated to be formally equivalent to the Statistical Multifragmentation Model, if the contribution of excited states are included in the state densities of the former, is implemented. Since this treatment requires the application of the Statistical Multifragmentation Model repeatedly on the hot fragments until they have decayed to their ground states, it becomes extremely computational demanding, making its application to the systems of interest extremely difficult. Based on exact recursion formulae previously developed by Chase and Mekjian to calculate the statistical weights very efficiently, we present an implementation which is efficient enough to allow it to be applied to large systems at high excitation energies. Comparison with the GEMINI++ sequential decay code shows that the predictions obtained with our treatment are fairly similar to those obtained with this more traditional model.Comment: 8 pages, 6 figure

    Finite size effects in isobaric ratios

    Full text link
    The properties of isobaric ratios, between nuclei produced in the same reaction, are investigated using the canonical and grand-canonical statistical ensembles. Although the grand-canonical for- mulae furnish a means to correlate the ratios with the liquid drop parameters, finite size effects make it difficult to obtain their actual values from fitting nuclear collision data.Comment: 4 pages, 2 figure

    Insights on Skyrme parameters from GW170817

    Full text link
    The binary neutron-star merger event, GW170817, has cast a new light on nuclear physics research. Using a neutron-star model that includes a crust equation of state (EoS), we calculate the properties of a 1.4 solar-mass neutron star. The model incorporates more than 200 Skyrme energy density functionals, which describe nuclear matter properties, in the outer liquid core region of the neutron star. We find a power-law relation between the neutron-star tidal deformability, Λ\Lambda, and the neutron-star radius, R. Without an explicit crust EoS, the model predicts smaller R and the difference becomes significant for stars with large radii. To connect the neutron star properties with nuclear matter properties, we confront the predicted values for Λ\Lambda, against the Taylor expansion coefficients of the Skyrme interactions. There is no pronounced correlation between Skyrme parameters in symmetric nuclear matter and neutron star properties. However, we find the strongest correlation between Λ\Lambda and KsymK_{sym}, the curvature of the density dependence of the symmetry energy at saturation density. At twice the saturation density, our calculations show a strong correlation between Λ\Lambda and total pressure providing guidance to laboratory nucleus-nucleus collision experiments
    corecore