50,613 research outputs found

    What Workers Want

    Get PDF
    [Excerpt] This updated edition of What Workers Want keeps the core text and chapter structure of the first edition (Chapters 1-7 in the current book), while eliminating its appendices. The appendices reported the methodology, telephone questionnaires, and written materials used in the two waves of the Worker Representation and Participation Survey (WRPS), all of which is no available online at www.nber.org/~freeman/wrps.html. That site also offers an integrated dataset of all findings, ready for download by interested researchers, and links to other national surveys, modeled on the WRPS, conducted since. New to the updated edition are a new introduction and conclusion. The Introduction examines how our original findings stand up in light of the survey research that others have done since the WRPS. The Conclusion offers suggestions on how to reform our labor relations system so that it delivers to workers what they want in the form of workplace representation and participation

    A study on task difficulty and acceleration stress

    Get PDF
    The results of two experiments which relate to task difficulty and the effects of environmental stress on tracking performance are discussed and compared to subjective evaluations. The first experiment involved five different sum of sine tracking tasks which humans tracked both in a static condition and under a 5 Gz acceleration stress condition. The second experiment involved similar environmental stress conditions but in this case the tasks were constructed from deterministic functions with specially designed velocity and acceleration profiles. Phase Plane performance analysis was conducted to study potential measures of workload or tracking difficulty

    On the Interaction of Internal Gravity Waves with Magnetic Field II. Convective Forcing

    Full text link
    We present results from numerical simulations of the interaction of internal gravity waves (IGW) with magnetic fields in the radiative interior of the Sun. In this second paper, the waves are forced self-consistently by an overlying convection zone and a toroidal magnetic field is imposed in the stably stratified layer just underneath convection zone. Consistent with the results of previous analytic and simple numerical calculations, we find a strong wave-field interaction, in which waves are reflected in the field region. The wave-field interaction and wave reflection depend on the field strength as well as adopted values of the diffusivities. In some cases wave reflection leads to an increased mean flow in the field region. In addition to reproducing some of the features of our simpler models, we find additional complex behaviour in these more complete and realistic calculations.Comment: accepted at MNRAS, 16 figure

    PI output feedback control of differential linear repetitive processes

    No full text
    Repetitive processes are characterized by a series of sweeps, termed passes, through a set of dynamics defined over a finite duration known as the pass length. On each pass an output, termed the pass profile, is produced which acts as a forcing function on, and hence contributes to, the dynamics of the next pass profile. This can lead to oscillations which increase in amplitude in the pass-to-pass direction and cannot be controlled by standard control laws. Here we give new results on the design of physically based control laws. These are for the sub-class of so-called differential linear repetitive processes which arise in applications areas such as iterative learning control. They show how a form of proportional-integral (PI) control based only on process outputs can be designed to give stability plus performance and disturbance rejection

    Incorporating Environmental Health into Pediatric Medical and Nursing Education

    Get PDF
    Pediatric medical and nursing education currently lacks the environmental health content necessary to appropriately prepare pediatric health care professionals to prevent, recognize, manage, and treat environmental-exposure–related disease. Leading health institutions have recognized the need for improvements in health professionals’ environmental health education. Parents are seeking answers about the impact of environmental toxicants on their children. Given the biologic, psychological, and social differences between children and adults, there is a need for environmental health education specific to children. The National Environmental Education and Training Foundation, in partnership with the Children’s Environmental Health Network, created two working groups, one with expertise in medical education and one with expertise in nursing education. The working groups reviewed the transition from undergraduate student to professional to assess where in those processes pediatric environmental health could be emphasized. The medical education working group recommended increasing education about children’s environmental health in the medical school curricula, in residency training, and in continuing medical education. The group also recommended the expansion of fellowship training in children’s environmental health. Similarly, the nursing working group recommended increasing children’s environmental health content at the undergraduate, graduate, and continuing nursing education levels. Working groups also identified the key medical and nursing organizations that would be important in leveraging these changes. A concerted effort to prioritize pediatric environmental health by governmental organizations and foundations is essential in providing the resources and expertise to set policy and provide the tools for teaching pediatric environmental health to health care providers

    Radiation environment for rendezvous and docking with nuclear rockets

    Get PDF
    Radiation environment data for the NERVA engine are provided which may be utilized in estimating radiation exposures associated with various space maneuvers. Spatial distributions of neutron and gamma tissue kerma rates produced during full thrust operation of the engine are presented. Final rendezvous with an orbiting space station would be achieved subsequent to full thrust operation during a period of 10 or more hours duration in which impulse is delivered by the propellant used for removal of decay heat. Consequently, post operation radiation levels are of prime importance in estimating space station exposures. Maps of gamma kerma rates around the engine are provided for decay times of 4 and 24 hours after a representative firing. Typical decay curves illustrating the dependence of post operation kerma rates on decay time and operating history are included. Examples of the kerma distributions around the engine which result from integration over specific exposure periods are shown

    The unbiased measurement of UV spectral slopes in low luminosity galaxies at z=7

    Full text link
    The Ultraviolet (UV) continuum slope beta, typically observed at z=7 in Hubble Space Telescope (HST) WFC3/IR bands via the J-H colour, is a useful indicator of the age, metallicity, and dust content of high-redshift stellar populations. Recent studies have shown that the redward evolution of beta with cosmic time from redshift 7 to 4 can be largely explained by a build up of dust. However, initial claims that faint z=7 galaxies in the Hubble Ultra Deep Field WFC3/IR imaging (HUDF09) were blue enough to require stellar populations of zero reddening, low metallicity and young ages, hitherto unseen in star-forming galaxies, have since been refuted and revised. Here we revisit the question of how best to measure the UV slope of z=7 galaxies through source recovery simulations, within the context of present and future ultra-deep imaging from HST. We consider how source detection, selection and colour measurement have each biased the measurement of beta in previous studies. After finding a robust method for measuring beta in the simulations (via a power law fit to all the available photometry), we remeasure the UV slopes of a sample of previously published low luminosity z=7 galaxy candidates. The mean UV slope of faint galaxies in this sample appears consistent with an intrinsic distribution of normal star-forming galaxies with beta=-2, although properly decoding the underlying distribution will require further imaging from the ongoing HUDF12 programme. We therefore go on to consider strategies for obtaining better constraints on the underlying distribution of UV slopes at z=7 from these new data, which will benefit particularly from the addition of imaging in a second J-band filter: F140W. We find that a precise and unbiased measurement of beta should then be possible.Comment: 15 pages, 12 figures, accepted to MNRAS with some text and figure alterations in response to referee's repor

    Probabilistic Mass-Radius Relationship for Sub-Neptune-Sized Planets

    Get PDF
    The Kepler Mission has discovered thousands of planets with radii $<4\ R_\oplus,pavingthewayforthefirststatisticalstudiesofthedynamics,formation,andevolutionofthesesubNeptunesandsuperEarths.Planetarymassesareanimportantphysicalpropertyforthesestudies,andyetthevastmajorityofKeplerplanetcandidatesdonothavetheirsmeasured.AkeyconcernisthereforehowtomapthemeasuredradiitomassestimatesinthisEarthtoNeptunesizerangewheretherearenoSolarSystemanalogs.Previousworkshavederiveddeterministic,onetoonerelationshipsbetweenradiusandmass.However,iftheseplanetsspanarangeofcompositionsasexpected,thenanintrinsicscatteraboutthisrelationshipmustexistinthepopulation.Herewepresentthefirstprobabilisticmassradiusrelationship(MRrelation)evaluatedwithinaBayesianframework,whichbothquantifiesthisintrinsicdispersionandtheuncertaintiesontheMRrelationparameters.Weanalyzehowtheresultsdependontheradiusrangeofthesample,andonhowthemassesweremeasured.AssumingthattheMRrelationcanbedescribedasapowerlawwithadispersionthatisconstantandnormallydistributed,wefindthat, paving the way for the first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-Earths. Planetary masses are an important physical property for these studies, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no Solar System analogs. Previous works have derived deterministic, one-to-one relationships between radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic scatter about this relationship must exist in the population. Here we present the first probabilistic mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies this intrinsic dispersion and the uncertainties on the M-R relation parameters. We analyze how the results depend on the radius range of the sample, and on how the masses were measured. Assuming that the M-R relation can be described as a power law with a dispersion that is constant and normally distributed, we find that M/M_\oplus=2.7(R/R_\oplus)^{1.3},ascatterinmassof, a scatter in mass of 1.9\ M_\oplus,andamassconstrainttophysicallyplausibledensities,isthe"bestfit"probabilisticMRrelationforthesampleofRVmeasuredtransitingsubNeptunes(, and a mass constraint to physically plausible densities, is the "best-fit" probabilistic M-R relation for the sample of RV-measured transiting sub-Neptunes (R_{pl}<4\ R_\oplus$). More broadly, this work provides a framework for further analyses of the M-R relation and its probable dependencies on period and stellar properties.Comment: 14 pages, 5 figures, 2 tables. Accepted to the Astrophysical Journal on April 28, 2016. Select posterior samples and code to use them to compute the posterior predictive mass distribution are available at https://github.com/dawolfgang/MRrelatio

    Water quality map of Saginaw Bay from computer processing of LANDSAT-2 data

    Get PDF
    There are no author-identified significant results in this report

    Numerical Algorithm for Detecting Ion Diffusion Regions in the Geomagnetic Tail with Applications to MMS Tail Season May 1 -- September 30, 2017

    Full text link
    We present a numerical algorithm aimed at identifying ion diffusion regions (IDRs) in the geomagnetic tail, and test its applicability. We use 5 criteria applied in three stages. (i) Correlated reversals (within 90 s) of Vx and Bz (at least 2 nT about zero; GSM coordinates); (ii) Detection of Hall electric and magnetic field signatures; and (iii) strong (>10 mV/m) electric fields. While no criterion alone is necessary and sufficient, the approach does provide a robust, if conservative, list of IDRs. We use data from the Magnetospheric Multiscale Mission (MMS) spacecraft during a 5-month period (May 1 to September 30, 2017) of near-tail orbits during the declining phase of the solar cycle. We find 148 events satisfying step 1, 37 satisfying steps 1 and 2, and 17 satisfying all three, of which 12 are confirmed as IDRs. All IDRs were within the X-range [-24, -15] RE mainly on the dusk sector and the majority occurred during traversals of a tailward-moving X-line. 11 of 12 IDRs were on the dusk-side despite approximately equal residence time in both the pre- and post-midnight sectors (56.5% dusk vs 43.5% dawn). MMS could identify signatures of 4 quadrants of the Hall B-structure in 3 events and 3 quadrants in 7 of the remaining 12 confirmed IDRs identified. The events we report commonly display Vx reversals greater than 400 km/s in magnitude, normal magnetic field reversals often >10 nT in magnitude, maximum DC |E| which are often well in excess of the threshold for stage 3. Our results are then compared with the set of IDRs identified by visual examination from Cluster in the years 2000-2005.Comment: In Submission at JGR:Space Physic
    corecore