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ABSTRACT

The Kepler Mission has discovered thousands of planets with radii < 4 R⊕, paving the way for the
first statistical studies of the dynamics, formation, and evolution of these sub-Neptunes and super-
Earths. Planetary masses are an important physical property for these studies, and yet the vast
majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how
to map the measured radii to mass estimates in this Earth-to-Neptune size range where there are no
Solar System analogs. Previous works have derived deterministic, one-to-one relationships between
radius and mass. However, if these planets span a range of compositions as expected, then an intrinsic
scatter about this relationship must exist in the population. Here we present the first probabilistic
mass-radius relationship (M-R relation) evaluated within a Bayesian framework, which both quantifies
this intrinsic dispersion and the uncertainties on the M-R relation parameters. We analyze how the
results depend on the radius range of the sample, and on how the masses were measured. Assuming
that the M-R relation can be described as a power law with a dispersion that is constant and normally
distributed, we find that M/M⊕ = 2.7(R/R⊕)

1.3, a scatter in mass of 1.9M⊕, and a mass constraint
to physically plausible densities, is the “best-fit” probabilistic M-R relation for the sample of RV-
measured transiting sub-Neptunes (Rpl < 4 R⊕). More broadly, this work provides a framework for
further analyses of the M-R relation and its probable dependencies on period and stellar properties.
Keywords: planets and satellites: composition — methods: statistical

1. INTRODUCTION

The Kepler Mission has found thousands of planetary
candidates with sizes between that of Earth and Nep-
tune (Mullally et al. 2015; Rowe et al. 2015; Burke et al.
2014; Batalha et al. 2013; Borucki et al. 2011). The
emergence of this population poses fundamental ques-
tions about the typical compositional constituents of
planets within a few times Earth’s size. As bulk densi-
ties offer some insight into this problem, mass and radius
measurements of individual planets have provided ob-
servational constraints for theoretical composition stud-
ies performed on a per-planet basis (e.g. Valencia et al.
2010; Rogers & Seager 2010; Lopez et al. 2012). Re-
cently these studies have shifted to considering the avail-
able planets as a statistical ensemble (e.g. Rogers 2015;
Wolfgang & Lopez 2015 sans mass constraints), which
motivates detailed analyses of the observed mass-radius
distribution.
The joint planetary mass-radius distribution, which is
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often couched in terms of the mass-radius “relationship”
(M-R relation), is also highly relevant for dynamical and
formation studies of the Kepler planet candidates (PCs).
Mass measurements for individual PCs are often unavail-
able, as the majority orbit stars too faint for Doppler
follow-up (Batalha et al. 2010) and only ∼ 6% exhibit
transit timing variations (TTVs) at high signal-to-noise
ratios (Mazeh et al. 2013). Therefore, a statistical “con-
version” is necessary to map observed radii to the masses
these studies need.
To date, several M-R relations have been posed in

the exoplanet literature. To solve the practical issue
described above, Lissauer et al. (2011) fit a power law
to Earth and Saturn and found M = R2.06, where M
and R are in Earth units. Wu & Lithwick (2013) de-
rived masses using the amplitudes of sinusoidal TTVs
for 22 planet pairs, and found M = 3R. More recently,
Weiss & Marcy (2014), hitherto WM14, fit a power law
to masses and radii available in the literature, which
was dominated by the 42 planets chosen by the Kepler
team to be followed up with radial velocity measurements
(Marcy et al. 2014); they found M = 2.69R0.93 for plan-
ets with 1.5 < R < 4 R⊕.
All of these results were produced via basic least

squares regression, which is commonly used in astronomy
to fit lines through points. However, this classic tech-
nique does not properly account for several issues that
are relevant to the small-planet M-R relation: measure-
ment uncertainty in the independent variable (i.e. planet
radii), non-detections and upper limits, and intrinsic, as-
trophysical scatter in the dependent variable (i.e. planet
masses). Thankfully, there are solutions to these prob-
lems in both the Bayesian and frequentist statistics lit-
erature (see §1 of Kelly (2007) for a concise overview).
We present an example of one of these techniques which
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can be executed using existing numerical algorithms and
code (§4), which is effectively a simplified implementa-
tion of the Kelly (2007) linear regression scheme.
Of particular interest is the intrinsic scatter that has

not been previously characterized. Theoretical work
on planet compositions suggest this scatter should ex-
ist: thermally evolved rock-hydrogen sub-Neptune in-
ternal structure models yield radii mostly indepen-
dent of mass (Lopez & Fortney 2014), which produces
significant mass-radius scatter when a distribution of
gaseous mass fractions is present in the population
(Wolfgang & Lopez 2015). Furthermore, the diversity
of choices for exoplanets’ internal structures produces
a range of radii at a given mass due only to differ-
ences in the layers’ compositions (e.g. Seager et al. 2007;
Fortney et al. 2007; Rogers et al. 2011).
These theoretical findings motivate us to move beyond

deterministic, one-to-one mappings, which are in a sense
“mean” relationships. This average behavior is insuffi-
cient and inappropriate if one’s aim is to argue for a par-
ticular physical process based on full distributions of pa-
rameters (versus qualitative comparison to observations),
or if the purpose is to rule out parts of parameter space,
which requires knowledge of the full mass-radius distri-
bution.
Realizing the need to move beyond deterministic

mass-radius relations for their own theoretical work,
Chatterjee & Tan (2015) derived a piecewise probabilis-
tic M-R relation by fitting the density distribution of
planets in four mass bins, and then fit a continuous, yet
still deterministic, relation to those results. However,
they stop short of computing a relation which is both
continuous and probabilistic (which they admit would be
ideal), and do not incorporate measurement error, which
is significant for small planets. With the hierarchical
Bayesian modeling that we employ here, we do both. In
the process, we also more fully characterize the uncer-
tainty in the M-R relation based on the current data.
The effort to understand this uncertainty is important,
as quantifying how well constrained the M-R relation pa-
rameters are will be a key metric by which we measure
the improvement in our understanding of the M-R distri-
bution, especially as TESS and its follow-up observations
produce more individual mass and radius measurements.
In this paper we show how a probabilistic M-R rela-

tion can be constructed (§2) and constrained (§4) using
any subset of planetary masses and radii (§3). We also
highlight the observational evidence for this expected in-
trinsic scatter and quantify it in a statistically robust
way that includes uncertainties on the M-R relation pa-
rameters (§5). We discuss the correct usage and some
major implications of these findings in §6.

2. MODELING THE M-R RELATION

Power laws are often used to parameterize the M-R re-
lation because they are conceptually and computation-
ally simple and can be easily fit to data using the familiar
tool of linear regression. We continue with this choice
to facilitate more direct comparisons with previous work
and to illustrate how a hierarchical framework enables
straightforward extensions to entire families of M-R rela-
tions. In addition, we cast this in terms of M(R) instead
of R(M) to address the practical problem of estimating
masses from Kepler radii.

γC σMα

M
(i)
tR

(i)
t

RV
vs.
time

Flux
vs.
time

N

Figure 1. Graphical model used to find the best-fit parameters
for the probabilistic mass-radius relationship in Eqn 2. These pa-
rameters of interest are yellow while the observed data are gray (see
§3) and unobserved parameters are white; definitions are below. In
practice, we summarize each planet’s “RV vs. time” dataset as the

mass measurement M
(i)
ob

and the uncertainty in that measurement,

σ
(i)
Mob

; similarly, the “Flux vs. time” dataset is summarized as the

radius measurement R
(i)
t and its uncertainty σ

(i)
Rob

. §6.3 contains
further discussion of this choice. Our full hierarchical model, which
includes the details of the probability distributions from which each
parameter is drawn, is displayed in Equation 4.

α = population-wide radius distribution parameters
C = constant in mean M-R relation
γ = power law index of mean M-R relation
σM = intrinsic dispersion in planet masses at a given radius

R
(i)
t = true radius of the ith planet

R
(i)
ob

= observed radius of the ith planet

σ
(i)
Rob

= measurement uncertainty in R
(i)
ob

M
(i)
t = true mass of the ith planet

M
(i)
ob

= observed mass of the ith planet

σ
(i)
Mob

= measurement uncertainty in M
(i)
ob

In particular, we consider three power law-based M-R
relations (Eqns 1-3). The first is the form used by most
prior studies (see §1):

M

M⊕

= C
( R

R⊕

)γ

(1)

where M is the mass of the planet, R is the planetary
radius, and C and γ are the parameters to be fit to the
data. This relation is deterministic in the sense that only
one mass is allowed for a given radius.
If instead we want to allow for a range — that is, if

we want to incorporate the expected intrinsic scatter —
then we need to create an M-R relation which specifies
how those masses should be distributed at a given in-
put radius. Again, taking the most simple, familiar, and
analytically tractable approach, we choose a Gaussian
distribution, where the mean population mass µ is given
by the above power-law relation and where the standard
deviation σM (units of M⊕) parameterizes the intrinsic
scatter in planet masses:

M

M⊕

∼ Normal
(

µ = C
( R

R⊕

)γ

, σ = σM

)

(2)

Note that ∼ means “drawn from the distribution”,
thereby marking the difference between a deterministic
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and a probabilistic M-R relation. Figure 1 is the graphi-
cal model corresponding to Eqn 2, and includes Gaussian
error bars on the measured masses and radii (see §4 for
all details of the model).
Generalizing further, the width of the intrinsic scatter

may change as planets increase in size, so we consider a
probabilistic M-R relation that allows the standard de-
viation itself to vary as a function of radius via the slope
β (units of M2

⊕R
−1
⊕ ):

M

M⊕

∼ Normal
(

µ = C
( R

R⊕

)γ

, σ =

√

σ2
M1 + βR̃

)

(3)

where R̃ = R/R⊕ − 1 and σM1 is now the standard de-

viation in planet masses at 1 R⊕ (R̃ = 0).

3. DATA

With the statistical M-R relations defined, we turn to
the problem of identifying which observational dataset
to use. Optimally we would use a subset of mass and
radius measurements that is uniform and complete, as
any systematic biases present in the sample will mani-
fest as biased M-R parameter values. Unfortunately, the
available masses and radii are far from this ideal, with
mass measurements made with two fundamentally dif-
ferent methods by many different pipelines and chosen
for follow-up by a complex, poorly documented selection
function. There is significant work to be done to un-
derstand how these systematics affect the M-R relation,
but it is outside the scope of this paper, as our main
purpose is to show how a probabilistic M-R relation can
be derived from whichever dataset one wishes to use.
Therefore, we choose a baseline dataset consisting of ra-
dial velocity-measured masses, which somewhat reduces
the heterogeneity of the sample while preserving a fairly
large number of data points.
Table 2 shows all of the masses and radii that we con-

sider, with our baseline dataset denoted with a label of
0; the list was constructed by starting with the WM14
dataset and identifying new planets and updates in the
NASA Exoplanet Archive (last accessed 1/30/2015). We
manually double-checked each planet to verify that the
reported measurements were correct and most up-to-
date, paying particular attention to which methods and
stellar parameters were used (data denoted by a label
of 1 were present in and haven’t changed since WM14).
Given the above concerns with dataset heterogeneity,
when both TTV and RV masses are independently avail-
able for a single planet, we choose the RV-measured
masses. In practice, only Kepler-18b (Cochran et al.
2011) provide strong enough mass constraints from both
methods to require a choice to be made, and even then
the two mass measurements are consistent. The TTV
dataset (label of 2) contains only the sub-Neptune-sized
planets that have had their transit timing variations fit
with N-body integrations, as these masses are the best
constrained and therefore provide the most information
for the sub-Neptune M-R relation; neither circumbinary
planets nor unconfirmed planets were included, again to
try to keep a somewhat more homogeneous dataset. Fi-
nally, to enable easier comparison with previous work,
we continued the error treatment of WM14: if asymmet-
ric upper and lower uncertainties were reported, we used

their average as a symmetric 1σ error bar9. 2σ upper
limits were included if they were < 80 M⊕ for R < 4 R⊕

and < 300 M⊕ for 4 < R < 8 R⊕.

4. FITTING THE M-R RELATIONS

We use hierarchical Bayesian modeling (HBM) to
fit the M-R relations in §2 to the data described in
§3. This statistical method is described in detail in
Wolfgang & Lopez (2015) in the context of exoplanet
compositions; further pedagogical discussion and exam-
ples of HBM in the astronomical literature is provided by
Loredo (2013). A very similar approach to this HBM-
enabled linear regression was detailed in Kelly (2007);
we refer the reader to that paper for an in-depth discus-
sion of the general advantages and improvements of this
approach over the commonly used χ2 analysis for linear
regression.
For the problem at hand, HBM (or the analogous fre-

quentist methods for multi-level modeling) is necessary
for a number of reasons:

• It allows us to directly model and fit the astro-
physical dispersion in the population as an explicit
parameter.

• It allows us to self-consistently incorporate uncer-
tainties on the independent variable (radii in this
case), without the need for elaborate bootstrapping
schemes.

• Most sub-Neptune mass uncertainties are large,
and some are realistically only upper limits. HBM
is able to simultaneously use all likelihood distri-
butions no matter their width or shape, which in-
creases the information content of the resulting M-
R relation and decreases the biases that binning or
weighting schemes introduce when these likelihoods
are asymmetric.

• Relatedly, HBM allows us to introduce the true
masses and radii as latent (unobserved) parame-
ters; this enables us to restrict the masses to phys-
ically allowed parameter space (such as M > 0 or
ρ < ρiron(M)) while preserving all of the informa-
tion in the observations, including when the “best-
fit” masses happen to be negative.

• As with all Bayesian methods, HBM produces pos-
terior distributions, allowing us to easily see the un-
certainties in the M-R relation parameters. Most
of the M-R relations currently reported and used
in the literature have no published uncertainties.

The hierarchical model for our baseline M-R relation
(Eqn 2) is displayed in Figure 1 to clarify the structural
relationships between parameters and observables. This
structure is also present in the written version below,
along with details of the distributions we used (“N” rep-
resents a normal distribution with the listed parameters
in order of µ and σ; “U” represents a uniform distribu-
tion with the listed numbers bounding the interval; and

9 Future work using HBM can improve on this error treatment
by using the full posteriors of the mass and radius measurements,
if these posteriors are made available in the literature (see §6.3).
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Figure 2. Posteriors for the parameters in our family of M-R relations (row 1: Equations 1-3; row 2: Equations 2-3; row 3 and gray
posterior samples in all panels, which contain all 10,000 saved samples from our thinned MCMC chains: Equation 3) when fit to our baseline
dataset. 68% and 95% contours are shown for each, and demarcate the uncertainties on these M-R relation parameters; the triangles denote
best-fit values. Panels b and c show that σM = 0 is strongly excluded for R < 4 R⊕, and so astrophysical scatter exists in the sub-Neptune
M-R relation. Therefore, theoretical studies which require an M-R relation should use a probabilistic one like that of Eqn 2 with one of the
sets of parameter values in Table 1.

“|” means “given”, i.e. the parameter to the left depends
on the parameters to the right):

γ ∼ N(1, 1)

ln(C) ∼ U(−3, 3)

log(σ2
M ) ∼ U(−4, 2)

R
(i)
t ∼ U(α1 = 0.1, α2 = 10)

µ
(i)
M |R

(i)
t , C, γ = γln(R

(i)
t ) + ln(C)

M
(i)
t |R

(i)
t , C, γ, σM ∼ N

(

eµ
(i)
M , σM

)

R
(i)
ob |R

(i)
t , σ

(i)
Rob ∼ N(R

(i)
t , σ

(i)
Rob)

M
(i)
ob |M

(i)
t , σ

(i)
Mob, R

(i)
t , C, γ, σM ∼ N(M

(i)
t , σ

(i)
Mob) (4)

For the deterministic M-R relation of Eqn 1, Eqn 4 re-
mains the same except there is no σM parameter, and

M
(i)
t |R

(i)
t , C, γ = eµ

(i)
M

while for the M-R relation of Eqn 3, there was an addi-

tional parameter β such that:

β ∼ U(−10, 10)

M
(i)
t |R

(i)
t , C, γ, σM1, β ∼ N

(

eµ
(i)
M ,

√

σ2
M1 + βR̃

(i)
t

)

Note that the normal distributions in the last two lines
of the model (collectively Eqn 4) are the same likelihoods
that are assumed when using χ2 to perform linear regres-
sion.
For all M-R relations we consider, we truncated the

M
(i)
t distribution such that 0 < M

(i)
t < M

(i)
t,pureFe where

M
(i)
t,pureFe was computed using the 0% rock mass frac-

tion analytic fits to the Fortney et al. (2007) rock-iron
internal structure models:

log(M
(i)
t,pureFe) =

−b+

√

b2 − 4a(c−R
(i)
t )

2a
(5)

where a = 0.0975, b= 0.4938, and c=0.7932
(Fortney et al. 2007b). This truncation was imposed to
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restrict the planet masses to physically plausible densi-
ties given the planet’s true radius.
We also performed a prior sensitivity analysis on our

population-wide parameters to assess the degree to which
our results depend on our priors. As given in Eqn 4, we
used a wide normal distribution for the power law in-
dex; we chose this prior to be wide with a variance of 1
to minimize the amount of information in the posterior
that comes from the prior, and we chose a mean of 1 be-
cause we expected a priori that near-linear relationships
were physically plausible. This choice was admittedly
arbitrary, so we tested the sensitivity of our results to
these assumptions. To do this, we ran the MCMC again,
but with two other priors: a uniform distribution for γ
and a uniform distribution for s where γ = tan(s), which
corresponds to a uniform distribution in the slope of the
power law10. Under each prior, we find that the posterior
modes (the “best fits”) for C, γ, and σM differed by no
more than 0.05 from the best-fits listed in Table 1, which
is below our reported precision. Additionally, we tested
several end member cases for the Rt distribution, and
the choice for this prior had a similarly negligible effect
on the result, primarily because Rob is fairly well con-
strained throughout the sample. Therefore, we conclude
that our results are robust to our choice of priors.
To produce the results shown in §5, we evaluate

each model with JAGS (Just Another Gibbs Sampler;
Plummer 2003), an R code for numerically evaluating
hierarchical Bayesian models with MCMC. For each set
of posteriors in Figures 2 and 3, we ran 10 chains con-
sisting of 500,000 iterations each. The first half of each
chain is discarded as “burn-in”, and the resulting half is
thinned by a factor of 250, such that we retain 10,000
posteriors samples of each parameter.
To assess the independence of these samples, we com-

pute the effective sample size (ESS), which accounts for
the autocorrelation still present within these thinned
Markov chains (ESS = 10000 indicates perfect indepen-
dence). The ESS is > 4000 for each parameter listed
in Table 1, with two exceptions. The ESS of the deter-
ministic relation parameters are around 230, an order of
magnitude lower than all the probabilistic relations we
tested. The difficulty this model had with convergence
reflects the challenges of applying a physically inappro-
priate model to data and is another indication that a
deterministic relation does not fit the observed masses
and radii well. Less concerning yet not quite as well con-
verged compared to the others were the parameters for
the probabilistic M-R relation fit only to the smallest
radii (ESS = 1500 − 4000). This occurs because these
small planets have the largest mass uncertainties; this
causes the maximummass restriction in Eqn 5 to severely
truncate most of the likelihoods, which results in high
autocorrelation in the MCMC chains. Given the small
ESS for these two sets of parameters, we caution against
over-interpretation of their results: their “best-fit” val-
ues in Table 1 are ∼ 6 and ∼ 2 times more uncertain than
the others (corresponding to the precision of the poste-
rior mean with the square root of the sample size [the
ESS]), and the boundaries of their 95% credible regions
in Figure 3 are poorly estimated. We do not spend time

10 Uniform γ places high probability at steep power laws, which
are highly unlikely on physical grounds.

Table 1
Best-Fit Parameters of the M-R Relation

Equation Dataset C γ σM β

1 baseline: RV only, < 4 R⊕ 2.1 1.5 — —
2 baseline: RV only, < 4 R⊕ 2.7 1.3 1.9 —
2 N-body TTVs only, < 4 R⊕ 0.6 1.7 1.7 —
2 Weiss (< 4 R⊕) 2.8 0.9 2.5 —
2 RV only, < 1.6 R⊕ 1.4 2.3 0.0 —
2 RV only, < 8 R⊕ 1.6 1.8 2.9 —
3 baseline: RV only, < 4 R⊕ 2.6 1.3 2.1 1.5

Note. — These “best fit” values correspond to the mode of
the joint posterior distributions; see code and posterior samples in
the github repository dawolfgang/MRrelation to account for the
full uncertainty in the parameters that is contained the posteriors
(see §5.3 for more details on this). Also, when using these M-R
relations to generate masses from planet radii, one should apply
the density constraint given by Eqn 5.

running these simulations longer, as they were performed
for the sake of comparison, and we display them for this
purpose only.
For the main result — the baseline dataset evaluated

with the probabilistic M-R relation — the ESS of C
and γ are 10,000, and the ESS of σM is 5,300. Fur-
thermore, the between-chain convergence diagnostic R̂
of Gelman & Rubin (1992) is ≤ 1.002 for all parameters
in our probabilistic models (except again for the small-

est radii planets, for which R̂ = 1.008 at its worst).
Together, these two tests provide no evidence that the
posteriors have not converged, and we proceed with the
usual amount of confidence (given that no one can ever
prove convergence).

5. RESULTS

Table 1 shows the results of our modeling: it displays
the best-fit parameters for each of the various M-R rela-
tions and datasets that we consider. The first entry cor-
responds to the deterministic M-R relation; entries 2− 6
correspond to our probabilistic M-R relation for various
datasets (see §3, §5.2); and the last entry corresponds to
the probabilistic M-R relation with non-constant scatter.
In particular, the second entry lists the best-fit values
for Eqn 2 using our baseline dataset. All were computed
with the density restriction given by Eqn 5; this con-
straint should also be applied to the masses generated
from these M-R relations when these relations are used
in forward modeling.
In all cases the reported “best fit” values correspond

to the mode of the joint posterior distribution, and are
denoted by the triangles in Figures 2-3. The uncertain-
ties in the parameters are represented by the displayed
68% and 95% posterior contours, with the contours corre-
sponding to our baseline dataset colored blue. The gray
points are the 10,000 saved posterior samples from our
thinned MCMC chains using the baseline dataset.

5.1. Deterministic vs. Probabilistic M-R Relations

The primary motivation for this paper was to assess
the observational evidence for intrinsic scatter in the sub-
Neptune M-R relation, and to characterize this scatter if
warranted. To do so, we compare the posteriors for our
three M-R relations in Figure 2 (note that not all rela-
tions have all parameters: for example, the deterministic
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M-R relation of Eqn 1 is described only by C and γ,
so it only appears in panel a). Panels b and c show
that this intrinsic scatter exists: because the posteriors
lie away from zero, σM = 0 is strongly excluded by the
data, even with the currently large individual mass error
bars. This is not a result of our choice of priors: the
parameterization in Eqn 4 is equivalent to σ2

M ∼ 1/σ2
M ,

which is strongly weighted toward zero, in contrast to
the posterior we compute.
Comparing the different M-R relations, we see that

the C, γ posterior for the model given by Eqn 1 is much
tighter than that for Eqns 2-3. This is expected: when
we keep the dataset fixed but add more parameters, es-
pecially one like σM that by construction allows wiggle
room around a deterministic relation, the observational
information content per parameter decreases, and the
posteriors widen. Given this expectation, what is ar-
guably more notable are the small differences between
Eqn 2 and 3’s model posteriors for the parameters they
have in common: most of the extra width of Eqn 3’s
joint posterior is contained in the new parameter β (Fig-
ure 2, panels d-f), which spans zero. There is therefore
not enough evidence in the current dataset to justify an
intrinsic scatter that changes as a function of radius, at

least not under our model assumptions11. For the best-
fit values of these parameters, which correspond to the
triangles in Figure 2, see Table 1.

5.2. Changing the Dataset

The results in §5.1 are for our baseline dataset, an RV-
only sample with Robs < 4 R⊕. However, all Bayesian
results depend on the data that are used, so it is impor-
tant to carefully consider what the dataset contains. To
demonstrate this, we present some illustrative examples
of the M-R relation posteriors under different mass and
radius selection functions (Figure 3).
The left side of Figure 3 displays results for sam-

ples of planets that have had their masses measured
in different ways. A number of prior studies (e.g.
Jontof-Hutter et al. 2014, WM14) have noted that plan-
ets with masses measured from their high SNR TTVs
tend to be systematically less dense than planets with

11 While outside the scope of this paper, future analyses of the
M-R relation can address this and other questions of model se-
lection more quantitatively by computing posterior Bayes factors.
Regardless, the results for the statistical models represented by
Eqns 1 and 3 can serve as a sensitivity test for that of Eqn 2, as
we describe.
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Figure 4. Left: the best-fit M-R relations from the right column of Figure 3. For each, the solid line denotes the mean relation µM

while the faded region denotes the standard deviation of the intrinsic scatter (vertical height of region to either side of line = σM ; note
σM = 0 for the smallest planets). The M-R relation of WM14 is the dashed black line while the baseline dataset is overplotted as the
thin black lines with triangles for the 2-σ upper limits (note that WM14 was calculated with a dataset that includes TTV planets). Right:
the baseline M-R relation (the second entry in Table 1) marginalized over the corresponding posterior distribution and subjected to our
physical mass range restriction. The blue region now corresponds to the central 68% of planet masses that were drawn at a given radius.
The 68% coverage interval of the posterior true masses and radii of individual planets are plotted red; the same Rob and Mob as on the left
are plotted in gray for comparison.

RV-measured masses12. The origin of this difference is
still unclear, and is not something our current modeling
is able to address (see §6.3): it could be due to either an
intrinsic difference in the densities of these two popula-
tions, or to observational bias, as TTVs for larger (and
thus less dense) planets are easier to detect while RVs for
more massive (and thus more dense) planets are easier
to measure. In any case, our results confirm the exis-
tence and nature of this discrepancy, if not the reason:
the green TTV-only posterior is shifted towards lower
C with similar γ and σM , which produces on average
lower masses for a given radius. Furthermore, the hy-
brid WM14 dataset yields the red posterior, which falls
between the TTV-only and RV-only posteriors yet peaks
at lower γ, illustrating that posterior modes (Bayesian
“best fits”) for joint datasets are not necessarily aver-
ages of the modes for separate subsets. This behavior
can be understood when one considers that these TTV-
measured planets are preferentially larger than the RV-
measured planets: this pulls the joint M-R relation down

12 This appears to be a population-level effect: there are few
planets with independently analyzed, strongly constrained TTV
and RVmasses, and they all yield measurements that are consistent
between the two methods [Kepler-18b & c (Cochran et al. 2011),
Kepler-88c (Nesvorný et al. 2013), and Kepler-117 (Bruno et al.
2015); note that only Kepler-18b appears in our table]. There are
other systems where the two methods have been used in concert
to infer planet masses (e.g., Kepler-9, Kepler-10 Kepler-11, Kepler-
89; see table for references), but the constraints from one or both
methods are relatively weak, making them insensitive tests of a
TTV-RV difference on a per-planet basis.

at higher radii because the TTV-measured planets there
have lower masses (which lowers γ) but affects the rela-
tion at lower radii very little because there are few small
planets in our TTV-measured sample (which keeps C
roughly the same).
The right side of Figure 3 displays results for sam-

ples of planets spanning different radius ranges, illus-
trating the effect that a somewhat arbitrary radius cut
can have on one’s results. Compared to our default
sub-Neptune range, a Robs < 8 R⊕ cut produces an
M-R relation that is overall shifted down, is steeper,
and has more intrinsic scatter (the cyan posterior has
lower C and higher γ, σM ). This is consistent with the
Lissauer et al. (2011) fit to Earth and Saturn over a sim-
ilar radius range, although neither of these Solar System
planets were included in our dataset. Meanwhile, the M-
R relation is poorly constrained for the Robs < 1.6 R⊕

sample, the radius range outside of which rocky planets
likely do not occur (Rogers 2015). This is because our

0 < M
(i)
t < M

(i)
t,pureFe) restriction is most severe for these

small planets, allowing only a small range of physically
plausible masses. This range is completely spanned by
most of the mass measurements (see right side of Figure
4), so there is little empirical extrasolar information for
Robs < 1.2 R⊕, and the orange posteriors are dominated
by the few larger planets with well measured masses.
With this sample, there is not currently enough obser-
vational evidence in this radius range to rule out a de-
terministic relation. This does not mean, however, that
these small planets all have the same composition, as the
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posterior 68% contour spans power-law indexes between
1 and 3 and a constant population-wide Earth-like rocky
composition would have a power-law index of around 3.7
(Valencia et al. 2006). More data will be needed to yield
a better estimate of the power-law index, and therefore
of the compositional diversity of small planets.

5.3. Visualizing the M-R Relation

While the posterior contours in Figures 2-3 show the
best-fit M-R relation parameters and their uncertainties,
visualizing the M-R relation itself requires that they be
mapped from parameter space to mass, radius space.
There are at least two ways to do this with Bayesian
analysis, and they are displayed in Figure 4.
First, one can simply take the best-fit values and plot

the resulting relation, as was done in the left panel. Here
the 1σ width of the probabilistic relation, as parameter-
ized by σM , is denoted by the faded colored region while
the mean relation, as parameterized by C and γ, is the
thick line of the same color. Note that the mean M-R
relations extend into unphysical regimes for R < 1 R⊕;
this is because the mass observations span the physically
allowed region, as discussed in §5.2, leaving the M-R re-
lation to be constrained primarily by the locations of the
larger, higher mass planets and our model assumptions.
The presence of intrinsic scatter in our M-R relation nev-
ertheless allows physically realistic masses to be assigned
to the smallest planets; to force this requirement, we rec-
ommend adding a density constraint to Eqn 2 such that
the probability of a planet being drawn outside this range
is 0 (the constraint we used is given in Eqn 5), or to use a
different M-R relation for sub-Earth-sized planets. The
different colors in the left panel correspond to the M-R re-
lations in the right column of Figure 3; these mostly over-
lap in the sub-Neptune regime. Note that the RV-only
dataset produces a steeper relation than one which also
contains high SNR TTV planets (i.e. the black dashed
WM14 relation), as discussed in §5.2.
While these best-fit M-R relations are easy to use, they

do not take into account the fact that the posteriors have
non-zero width and therefore a range of M-R relation pa-
rameters are allowed by any one dataset. A more thor-
ough implementation of these results would account for
these uncertainties by integrating over all of the posterior
samples. This marginalization, which also incorporates
the physical restrictions on Mt as given by Eqn 5, is dis-
played on the right: now the blue region corresponds to
the central 68% of planet masses that were drawn for a
given radius. Note that this region is wider than that
on the left and that the masses no longer extend into
unphysical regimes. The 68% coverage interval of the
posterior true masses and radii of individual planets in
the baseline sample are plotted red, while the same Rob

and Mob as on the left are plotted in gray. As expected
(see the end of §6.2), the posteriors have “shrunk” toward
the mean relation within the uncertainties provided by
the data. Furthermore, one can readily see that the data
are qualitatively consistent with the modeled M-R rela-
tion: the red lines fall within and immediately around
the blue region (see §6.2 for a quantitative treatment of
model checking).

6. DISCUSSION

6.1. Using the M-R Relation to Predict Masses

The most straightforward and computationally simple
way to map a sub-Neptune’s radius to a mass while ac-
counting for intrinsic scatter is to adopt Eqn 2 with one
of the sets of parameters in Table 1 and impose a den-
sity constraint like Eqn 5 for the smallest planets. This
best-fit M-R relation is analytic and represents a sub-
stantial improvement over the previous deterministic re-
lationships in capturing the full mass-radius distribution.
However, it does not incorporate uncertainties in the M-
R relation parameters or uncertainties in the measured
planet radius itself. Depending on how detailed one’s
analysis needs to be, a more accurate predictive mass
distribution may be needed.
To account for these issues, one must compute the pos-

terior predictive M-R relation, which marginalizes over
both the posteriors displayed here and the radius poste-
rior produced by one’s light curve modeling. This mass
distribution will be wider than that produced by simply
applying Eqn 2 (see right side of Figure 4) because it
incorporates the above sources of uncertainty and thus
more accurately reflects our state of knowledge about
these planets’ masses. Kepler-452 b (Jenkins et al. 2015)
provides an example of an individual planet’s posterior
predictive mass distribution that has been calculated
with this probabilistic M-R relation; because its com-
putation requires the numerical posterior samples that
we have produced, the resulting mass distribution is also
numerical in nature. To enable more calculations like
this one, we have posted our posterior samples in the
github repository dawolfgang/MRrelation along with R
code that uses them to compute and plot the posterior
predictive mass distribution for individual planets.

6.2. Model Checking

The purpose of the right panel in Figure 4 is to provide
a qualitative comparison between the data and the base-
line probabilistic M-R relation; this visual check imme-
diately verifies that, in the broadest sense, our model is
a reasonable description of the data (see §5.3). However,
no model perfectly describes nature. A more in-depth
look is warranted, to both understand the limitations of
the current model and to identify areas for improvement
in future work.
Quantitatively, we can check the data-model con-

sistency by computing a “hierarchical p-value”, which
yields the fraction of all possible datasets which are more
discrepant from the model than the observed dataset.
This calculation necessarily involves sampling from our
forward model (Eqn 4) and using those samples to calcu-
late a statistic which quantifies “discrepant”. The identi-
fication of robust and useful hierarchical statistics is still
an active area of statistical research (see, for example,
Bayarri & Castellanos 2007), as the multi-level nature of
hierarchical modeling offers a number of choices that test
different aspects of the model. As a result, model check-
ing in practice can be an involved process that requires
investigations into multiple parts of the problem. We
provide two such investigations below to illustrate some
of the subtlety of this endeavor.
Regardless of the details, most forms of Bayesian model

checking use the posterior predictive distribution. Con-
ceptually, this distribution defines the probability of ob-
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serving a certain data value given the currently observed
dataset and the model. Mathematically, the posterior
predictive distribution for a new observation xnew is de-
fined as:

p(xnew |x̂,M1) =

∫

p(xnew |θ,M1)p(θ|x̂,M1)dθ (6)

where p(xnew |θ,M1) is the likelihood of a new, currently
unobserved data point given the parameters θ of model
M1, and p(θ|x̂,M1) is the posterior of model M1, i.e.
the joint probability of all of M1’s parameters given the
observed dataset x̂. The integral denotes the process of
marginalization over the parameters, so that the prob-
ability of a new observation incorporates the model un-
certainty allowed by the current observations.
Next, one draws hypothetical data from this posterior

predictive distribution until a dataset of the same size N
as the observed dataset is achieved:

x̂new ∼
N

p(xnew |x,M1) (7)

where x̂new = {x̂new,1, x̂new,2, ..., x̂new,N} and “∼
N
”

means “draw from that same distribution N times”. This
dataset is then used to compute the statistic of choice
(see discussion below). Repeating this process thousands
of times (i.e. bootstrapping the statistic) generates a dis-
tribution of the statistic which can then be compared to
the value that was calculated from the observed dataset.
If the observed statistic falls within this distribution, the
model is consistent with the data (see Figure 5).
In practice, MCMC simulations (§4) provide samples

from the posterior rather than the analytic form of the
posterior as required in Eqn 6; therefore, the posterior
predictive distribution is not directly calculated. Instead,
Eqns 6 and 7 are combined by using the posterior sam-
ples:

θ̂ ∼ p(θ|x̂,M1)

to define the likelihood that one then draws from:

x̂new ∼
N

p(xnew |θ̂,M1) (8)

Performing these two steps repeatedly produces an en-
semble of datasets drawn from Eqn 6. Applying Eqn 8
to our M-R relation requires evaluating the lower levels
of the forward model described in Equation 4.
Part of the subtlety of checking data-model consistency

arises because our model is hierarchical. In particular, θ̂
of Eqn 8 includes both the population-wide parameters

C, γ, σM and the individual parameters M
(i)
t , R

(i)
t ; we

can use the posterior samples of either of these groups
of parameters to calculate x̂new. We show the result
of both choices in Figure 5, using the posterior sam-
ples from the baseline M-R relation (second line of Table
1). Conceptually, using samples from the individual true

mass and radius posteriors (θ̂ =
{

M
(i)
t , R

(i)
t

}

) evalu-

ates the fit of the model to the currently observed set
of planets (the green histograms on the left), while us-
ing posterior samples for the M-R relation parameters
(θ̂ = {C, γ, σM}) evaluates the fit of the model to alto-
gether new sets of planets (the blue histograms on the

right). For the former case, the same σ
(i)
Mob and σ

(i)
Rob as

the observed dataset are used; for the latter case, σ
(i)
Mob

is drawn from the distribution of σMob for the observed

planets that have a similar mass, and σ
(i)
Rob is drawn from

the observed dataset’s full distribution of σRob without
controlling for radius (the size of the radius error bars
are fairly constant across the dataset).
The second aspect of hierarchical model-checking

which requires some effort is the identification of a ro-
bust statistic to quantify the discrepancy between the
observed data and the model-generated data. Optimally
this statistic would test the fit of every part of the mod-
eled probability distribution, including the “average” be-
havior of the model, the “extreme” behavior out on the
tails of the distribution, and for hierarchical models, the
accuracy of the grouping and relational structure that
is illustrated by graphs like Figure 1. Due to high di-
mensional parameter space, this proves to be very dif-
ficult, so one must identify several statistics which test
such aspects separately. To illustrate the problem, we
choose two: f1σ, the fraction of a given dataset’s simu-
lated mass, radius observations which fall within the 68%
coverage interval of our probabilistic, baseline M-R rela-
tion (blue region in Figure 4), and fµ, the fraction of a
given dataset’s mass measurements whose 1σ error bars
cross the mean relation µ (see Eqn 2) of that same model.
Therefore, f1σ tests how well the width of our probabilis-
tic M-R relation fits the data, and fµ tests how tightly
grouped the data are around the mean compared to the
normal distribution of our model.
The results of these tests are displayed in Figure 5. The

observed data’s f1σ statistic (top) falls at the 63rd and
83rd percentiles (i.e. within “one sigma”) of the distri-
butions for datasets generated from the individual pos-
teriors and the population-wide posteriors, respectively.
Therefore, the model is fully consistent with the data for
the aspect of the model that this statistic tests: the in-
ferred intrinsic scatter of the M-R relation. On the other
hand, the observed data’s fµ statistic falls at the 2nd and
0.2th percentile of the distributions. This test is sensi-
tive to the shape of the distribution around the mean
relation, and thereby probes the appropriateness of our
assumption of a normal distribution in Eqn 2. The fact
that the data are marginally inconsistent with this aspect
of the model reveals that this is an area of improvement
for future work (see §6.3 for a further discussion about
this).
The differences in the model-data fit implied by these

two statistics illustrates how careful one must be in per-
forming model checking and interpreting the results. In-
stead of asking “is the model consistent with the data?”,
a more well-posed question would be “in what ways are
the model consistent with the data?”, especially as these
statistical models become more complex to accommodate
more sources of uncertainty and more realistic physics.
For the model at hand, we address this question by re-
turning to our purpose. We wanted to explore the need
for intrinsic scatter in the M-R relation; therefore, we
care most about the quality of the fit with respect to the
spread of the M-R relation, i.e. the data-model consis-
tency as quantified by f1σ. Because this fit is good, we
are satisfied that our main result holds up to this further
scrutiny. The fµ data-model discrepancy has implica-
tions for our choice to use a normal distribution for the
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Figure 5. Checking the model against the observed data, us-
ing two different statistics to quantify the data-model consistency
(see §6.2). All panels contain 5,000 hypothetical datasets generated
from the baseline posterior predictive distribution (Eqns 6-8), with
the statistic for the observed dataset (Table 2) as the vertical black
dashed line. The green histograms on the left show the consistency
of the model with the current dataset, while the blue histograms
on the right show the consistency with new hypothetical datasets.
The top histograms show the distribution of the statistic f1σ . The
observed f1σ falls at the 63rd and 83rd percentiles of the distribu-
tion (left and right, respectively), indicating that the width of the
model’s M-R relation is consistent with the data. The bottom his-
tograms show the distribution of the statistic fµ. The observed fµ
falls at the 2nd and 0.2th percentiles of the distribution, indicating
that there is room for future improvement on the choice of what
distribution to use for the probabilistic M-R relation.

probabilistic M-R relation, which we discuss in §6.3.
To wrap up our discussion on hierarchical Bayesian

model checking, we note that the reader may find it
surprising that the distribution of f1σ statistics peaks
around ∼ 0.4, given that the statistic was defined by the
“one-sigma” central region of the M-R relation. The rea-
son why the statistic does not instead cluster around 0.68
is due to a well-known feature of hierarchical modeling
called shrinkage. First worked out by Stein (1955) and
developed within a Bayesian framework by Good (1965),
shrinkage refers to the tendency for individual parame-
ter values at intermediate levels of hierarchical models
(such as M

(i)
t , R

(i)
t ) to cluster more closely together, or

“shrink” toward their mean, than if the parameters had
been analyzed completely independently of each other
(we see this shrinking visually by comparing the gray and
red lines in the right panel of Figure 4). This occurs be-
cause, by design, the hierarchical structure of the model
causes these individual parameters to be related to each
other, which then enables information about one parame-
ter to influence our inference for another parameter. This
additional information, provided solely by the hierarchi-
cal structure, causes the variance among the population
to decrease relative to the case where the structure, and
thus the information, was not available. This decrease in
variance is perceived as a “shrinking” towards the mean.
We can understand how shrinkage manifests for the M-

R relation by returning to the forward model defined in
Eqn 4. First we note that it is the true masses and radii,
not the observed masses and radii, which are drawn from

the M-R relation. Therefore, it is the M
(i)
t and R

(i)
t val-

ues which would produce f1σ = 0.68. However, we don’t

actually observeM
(i)
t and R

(i)
t outright; we observe them

convolved with some error σ
(i)
ob . Because the convolution

of a normal distribution with another normal produces a
wider normal distribution, we would indeed expect more
of the observed mass and radius points to fall outside of
the “one-sigma” bounds defined by the top level of the
model. With this additional insight into the nature of
hierarchical models, we understand that this behavior is
not only consistent with what we see, but expected.

6.3. Caveats and Future Work

As discussed in §2-3, we made a number of assumptions
and modeling choices to facilitate a straightforward in-
vestigation into the need for an intrinsic scatter term in
the sub-Neptune M-R relation. Some of these choices,
such as parameterizing the relation with a power law or
using a normal distribution to characterize the scatter,
were driven by convenience and familiarity rather than
by physics. In particular, we chose to use a power law
in order facilitate direct comparisons between our results
and those in the literature, and we chose the normal dis-
tribution because it directly parameterizes the intrinsic
scatter in the population rather than relying on a trans-
formation from a more obscure distribution to derive the
population variance. In general, our philosophy was to
limit the number of free parameters in our model as much
as possible in order to maximize the information content
per parameter.
That said, these parameterizations are by no means

the only ones that could be reasonably used. These ap-
proximations can and should be revisited in future work,
especially as more data becomes available and we begin
to describe more subtle features in the M-R relation. An
important aspect of these studies will be model-checking
to inform choices for parameterizing the M-R relation
(see §6.2) and performing quantitative model compar-
isons. For now, we emphasize that the inclusion of any
kind of probability distribution to account for intrinsic
scatter represents a significant improvement over prior
work, and we leave testing different distributions for fu-
ture studies.
A related parameterization issue is our choice not to in-

clude any other planet properties into this M-R relation,
such as a dependence on orbital period. It is entirely
plausible on both theoretical and observational grounds
that the M-R relation at short periods may be different
from that at long periods. Theoretically, photoevapo-
ration is likely to have eroded planets on short orbits
(see, for example, Murray-Clay et al. 2009; Lopez et al.
2012; Howe & Burrows 2015), thereby causing the pop-
ulation of highly irradiated planets to be denser on aver-
age; alternatively, migration could have produced a mass-
dependent stopping location given a certain structure for
the inner regions of the disk (e.g. Beńıtez-Llambay et al.
2011) or tidal circularization could have produced a
density-period correlation for the shortest orbits (Barnes
2014). Observationally, we see a suggestive dearth of > 3
R⊕ Kepler planet candidates and lower-mass RV planets
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at short orbital periods (Beaugé & Nesvorný 2013) and
a period dependence in the marginalized, bias-corrected
Kepler radius distribution (Youdin 2011; Howard et al.
2012; Morton & Swift 2014). These observations hint at
the potential for interesting features in the joint density-
period distribution.
While these results provide strong motivation for fur-

ther investigations into period-dependent M-R relations,
there will be numerous details to address in fitting the
more complex period-dependent statistical model to the
data. We choose to leave these analyses for future work
given the number of tests that we have already performed
here (choice of parameterization for the intrinsic scatter,
RV vs. TTV masses, and different radius ranges). In par-
ticular, this future work will need to robustly account for
the systematic biases between the different mass mea-
surement methods to make sure that our inferences are
not driven by arbitrary choices for the data we use (or if
these choices prove to be unavoidable, to quantify their
effect). In general, future studies will need to perform
model comparison to identify the most useful parameter-
izations given the data. These two efforts pose cutting-
edge statistical challenges that are worthy of separate in-
vestigations in and of themselves, and so we reserve them
for follow-up studies that build on the results presented
here.
Returning to our current statistical model for the M-R

relation, our third major modeling choice after the power
law and Gaussian astrophysical scatter was using Gaus-
sian errors for the observed mass and radius measure-
ments, as denoted in the last line of our statistical model
(Eqn 4). The most accurate hierarchical analyses include
the actual likelihood used to infer these planetary param-
eters from the lower-level photometric and spectroscopic
data, rather than assume such a heavily simplified func-
tional form as we did. Incorporating observers’ true like-
lihoods is important to capture important correlations
that exist in the measurement analysis and to use all of
the information contained in the lower-level data. Ide-
ally, future planet discovery papers will make their full,
joint likelihood distributions available in addition to the
reported “best-fit” value; depending on the type of anal-
ysis that observers use to make measurements from their
data, this means providing either log-likelihood (e.g. χ2)
contours over all of the parameters that were considered
or providing posterior samples along with detailed infor-
mation about the choice of priors. Unfortunately, this
information is not publicly available, and so we cannot
use it. Therefore, we follow the convention established
by WM14 in using a normal distribution to represent the
marginalized mass or radius likelihood.
Another notable approximation that we have made

arises from the difference between the graphical model
describing our M-R relation (Figure 1) and the way in
which we have implemented it (Eqn 4). The difference

between the two is subtle: by conditioning on σ
(i)
Mob in

the lowest level of the model, we are assuming that the
observed mass measurement uncertainty is independent
from the measurement itself. In reality, the calculation
of both the uncertainty and the measured value are pro-
duced by the same modeling process and thus are cor-

related in a potentially nontrivial way13. In practice,
we had no other choice than to assume independence
because the nature of this correlation is rarely, if ever,
published.
An important caveat about our results is that we ig-

nore selection effects, primarily due to the inability to
model the human decisions which affected the ground-
based follow-up observing campaigns. As discussed in
§3, we would ideally have a uniform sample of masses
and radii which were analyzed in the same way, and have
well-characterized the selection effects and detection effi-
ciencies. Unfortunately, this is simply not possible at the
present moment. The sample is highly heterogeneous,
a compilation of many observing teams’ programmatic,
yearly, and nightly priorities that are not communicated
in the literature and therefore cannot be accurately mod-
eled. There is significant, difficult work still to be done
to understand the extent to which the follow-up process
shapes the observed mass-radius space and therefore in-
fluence our inferences for the underlying M-R relation.
This is particularly important for interpreting the ap-

parent discrepancy between the population of TTV-
measured masses and the population of RV-measured
masses. In §5.2 we corroborate the systematic den-
sity difference between TTV and RV planets that
had been noticed by Jontof-Hutter et al. (2014) and
Weiss & Marcy (2014), as we find a ∼ two “sigma” off-
set in the two datasets’ M-R relation parameters. Since
we do not attempt to model the selection effects that
are involved, we cannot distinguish how much of this
offset is created by observational bias and how much is
due to an intrinsic difference in the density distribution.
If the latter turns out to be the driving factor behind
this apparent discrepancy, disentangling the underlying
reason for this astrophysical density difference from the
current list of features which distinguish the two samples
will have numerous implications for planet formation and
evolution.

7. CONCLUSIONS

In this paper we have defined and constrained a proba-
bilistic mass-radius relationship for sub-Neptune planets
(Eqn 2 with parameter values in Table 1 and the density
constraint provided in Eqn 5). In particular, we demon-
strate that there is intrinsic, astrophysical scatter in this
relation, and that, except for the smallest planets, this
scatter is nonzero for all considered datasets. For the
first time in the exoplanet literature, we display the un-
certainties in the M-R relation parameters through pos-
terior distributions and explain how to properly incor-
porate these uncertainties into a predictive distribution
of masses for individual planets. This M-R relation will
be useful for anyone who wishes to perform large-scale
dynamical or planet formation studies with the Kepler
planet candidates.
More broadly, this work provides a framework for fur-

13 At first glance this may seem like an inconsequential difference
considering the other modeling assumptions we have made, but
the assumption of independence becomes problematic when the
processes of detection and measurement use the same data and
when the population analyses use regions of parameter space where
the detection efficiency starts to drop (see Loredo & Wasserman
(1995) for the technical details). We do not correct for detection
bias in this paper, so are unaffected by this problem.
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ther analyses of the M-R relation and its probable de-
pendencies on period and stellar properties. Here we
have demonstrated how to develop and apply a statisti-
cal model that incorporates measurement uncertainties
into population-wide inference of the sub-Neptune M-
R relation and that directly produces estimates of the
uncertainty of the inferred parameters. This method is
advantageous because it is quantitative and easily gener-
alizable to include additional variables which may be im-
portant in the underlying M-R relation that we are trying
to model, such as incident flux (§6.3) or different stellar
masses or metallicities. We do not investigate these pos-
sibilities here, as we wish to begin this broader effort with
the simplest reasonable statistical model. Nevertheless,
searching for additional dependencies in the M-R rela-
tion is an important endeavor in order to understand
which physical processes shape the super-Earth popula-
tion. With this work we establish both a point of com-
parison and a framework for these further studies.
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Beaugé, C., & Nesvorný, D. 2013, ApJ, 763, 12
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A2
Biddle, L. I., Pearson, K. A., Crossfield, I. J. M., et al. 2014,

MNRAS, 443, 1810
Bonfils, X., Gillon, M., Udry, S., et al. 2012, A&A, 546, A27
Bonomo, A. S., Sozzetti, A., Lovis, C., et al. 2014, A&A, 572, A2
Bordé, P., Bouchy, F., Deleuil, M., et al. 2010, A&A, 520, A66
Borucki, W. J., Koch, D. G., Brown, T. M., et al. 2010, ApJ, 713,

L126
Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 736, 19
Borucki, W. J., Agol, E., Fressin, F., et al. 2013, Science, 340, 587
Bruno, G., Almenara, J.-M., Barros, S. C. C., et al. 2015,

European Physical Journal Web of Conferences, 101, 06014
Burke, C. J., Bryson, S. T., Mullally, F., et al. 2014, ApJS, 210, 19
Butler, R. P., Vogt, S. S., Marcy, G. W., et al. 2004, ApJ, 617, 580
Carter, J. A., Winn, J. N., Holman, M. J., et al. 2011, ApJ, 730,

82
Carter, J. A., Agol, E., Chaplin, W. J., et al. 2012, Science, 337,

556
Charbonneau, D., Berta, Z. K., Irwin, J., et al. 2009, Nature, 462,

891
Chatterjee, S., & Tan, J. C. 2015, ApJ, 798, LL32
Cochran, W. D., Fabrycky, D. C., Torres, G., et al. 2011, ApJS,

197, 7
Dragomir, D., Matthews, J. M., Eastman, J. D., et al. 2013, ApJ,

772, L2
Dressing, C. D., Charbonneau, D., Dumusque, X., et al. 2015,

ApJ, 800, 135
Dumusque, X., Bonomo, A. S., Haywood, R. D., et al. 2014, ApJ,

789, 154
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659,

1661
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 668,

1267
Fressin, F., Torres, G., Rowe, J. F., et al. 2012, Nature, 482, 195
Gautier, T. N., III, Charbonneau, D., Rowe, J. F., et al. 2012,

ApJ, 749, 15
Gelman, A., & Rubin, D. 1992, Statistical Science, 7, 457
Gillon, M., Demory, B.-O., Benneke, B., et al. 2012, A&A, 539,

A28
Good, I. J. 1965, The Estimation of Probabilities: An Essay on

Modern Bayesian Methods, M.I.T. Press
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Table 2
Masses and Radii of Small Planets

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

55 Cnc e 0.737 8.09 0.26 2.17 0.098 McArthur(2004) Nelson(2014), Gillon(2012) 0
CoRoT-7 b 0.854 4.73 0.95 1.58 0.064 Queloz(2009); Leger(2009) Barros(2014) 0
GJ 1214 b 1.580 6.45 0.91 2.65 0.09 Charbonneau(2009) Carter(2011) 0,1
GJ 3470 b 3.337 13.73 1.61 3.88 0.32 Bonfils(2012) Biddle(2014) 0
HD 97658 b 9.491 7.87 0.73 2.34 0.16 Howard(2011) Dragomir(2013) 0,1
HIP 116454 b 9.12 11.82 1.33 2.53 0.18 Vanderburg(2015) Vanderburg(2015) 0
Kepler-10 b 0.837 3.33 0.49 1.47 0.02 Batalha(2011) Dumusque(2014) 0
Kepler-10 c 45.294 17.2 1.9 2.35 0.06 Batalha(2011) Dumusque(2014) 0
Kepler-19 b 9.287 — 20.3 2.21 0.048 Borucki(2011) Ballard(2011) 0,4
Kepler-20 b 3.696 8.7 2.2 1.91 0.16 Borucki(2011) Gautier(2012) 0
Kepler-20 c 10.854 16.1 3.5 3.07 0.25 Borucki(2011) Gautier(2012) 0
Kepler-20 d 77.612 — 20.1 2.75 0.23 Borucki(2011) Gautier(2012) 0,4
Kepler-20 e 6.098 — 3.08 0.868 0.08 Borucki(2011) Fressin(2012) 0,4
Kepler-20 f 19.58 — 14.3 1.03 0.11 Borucki(2011) Fressin(2012) 0,4
Kepler-21 b 2.786 — 10.4 1.635 0.04 Borucki(2011) Howell(2012) 0,4
Kepler-25 b 6.239 9.60 4.20 2.71 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-37 b 13.367 2.78 3.70 0.32 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-37 c 21.302 3.35 4.00 0.75 0.03 Borucki(2011) Marcy(2014) 0,1
Kepler-37 d 39.792 1.87 9.08 1.94 0.06 Borucki(2011) Marcy(2014) 0,1
Kepler-48 b 4.778 3.94 2.10 1.88 0.10 Borucki(2011) Marcy(2014) 0,1
Kepler-48 c 9.674 14.61 2.30 2.71 0.14 Borucki(2011) Marcy(2014) 0,1
Kepler-48 d 42.896 7.93 4.60 2.04 0.11 Borucki(2011) Marcy(2014) 0,1
Kepler-62 b 5.715 — 9 1.31 0.04 Borucki(2011) Borucki(2013) 0,4
Kepler-62 c 12.44 — 4 0.54 0.03 Borucki(2013) Borucki(2013) 0,4
Kepler-62 d 18.164 — 14 1.95 0.07 Borucki(2011) Borucki(2013) 0,4
Kepler-62 e 122.39 — 36 1.61 0.05 Borucki(2011) Borucki(2013) 0,4
Kepler-62 f 267.29 — 35 1.41 0.07 Borucki(2013) Borucki(2013) 0,6
Kepler-68 b 5.399 5.97 1.70 2.33 0.02 Borucki(2011) Marcy(2014) 0,3
Kepler-68 c 9.605 2.18 3.50 1.00 0.02 Batalha(2013) Marcy(2014) 0,3
Kepler-78 b 0.354 1.69 0.41 1.20 0.09 Sanchis-Ojeda(2013a) Howard(2013) 0,1
Kepler-89 b 3.743 10.50 4.60 1.71 0.16 Borucki(2011) Weiss(2013) 0,1
Kepler-93 b 4.727 4.02 0.68 1.48 0.019 Borucki(2011) Dressing(2015) 0
Kepler-94 b 2.508 10.84 1.40 3.51 0.15 Borucki(2011) Marcy(2014) 0,1
Kepler-95 b 11.523 13.00 2.90 3.42 0.09 Borucki(2011) Marcy(2014) 0,1
Kepler-96 b 16.238 8.46 3.40 2.67 0.22 Borucki(2011) Marcy(2014) 0,1
Kepler-97 b 2.587 3.51 1.90 1.48 0.13 Borucki(2011) Marcy(2014) 0,1
Kepler-98 b 1.542 3.55 1.60 1.99 0.22 Borucki(2011) Marcy(2014) 0,1
Kepler-99 b 4.604 6.15 1.30 1.48 0.08 Borucki(2011) Marcy(2014) 0,1
Kepler-100 b 6.887 7.34 3.20 1.32 0.04 Borucki(2011) Marcy(2014) 0,1
Kepler-100 c 12.816 0.85 4.00 2.20 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-100 d 35.333 -4.36 4.10 1.61 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-101 c 6.03 — 9 1.25 0.18 Borucki(2011) Bonomo(2014) 0,5
Kepler-102 d 10.312 3.80 1.80 1.18 0.04 Borucki(2011) Marcy(2014) 0,1
Kepler-102 e 16.146 8.93 2.00 2.22 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-102 f 27.454 0.62 3.30 0.88 0.03 Borucki(2011) Marcy(2014) 0,1

http://www.r-project.org/conferences/DSC-2003/Proceedings/
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Table 2 — Continued

Planet Name Period Mobs σMobs Robs σRobs First Mass, Radius Note
(days) (M⊕) (M⊕) (R⊕) (R⊕) Reference Reference

Kepler-102 b 5.287 0.41 1.60 0.47 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-102 c 7.071 -1.58 2.00 0.58 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-103 b 15.965 14.11 4.70 3.37 0.09 Borucki(2011) Marcy(2014) 0,1
Kepler-106 b 6.165 0.15 2.80 0.82 0.11 Borucki(2011) Marcy(2014) 0,1
Kepler-106 c 13.571 10.44 3.20 2.50 0.32 Borucki(2011) Marcy(2014) 0,1
Kepler-106 d 23.980 -6.39 7.00 0.95 0.13 Batalha(2013) Marcy(2014) 0,1
Kepler-106 e 43.844 11.17 5.80 2.56 0.33 Borucki(2011) Marcy(2014) 0,1
Kepler-109 b 6.482 1.30 5.40 2.37 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-109 c 21.223 2.22 7.80 2.52 0.07 Borucki(2011) Marcy(2014) 0,1
Kepler-113 b 4.754 7.10 3.30 1.82 0.05 Borucki(2011) Marcy(2014) 0,1
Kepler-113 c 8.925 -4.60 6.20 2.19 0.06 Borucki(2011) Marcy(2014) 0,1
Kepler-131 b 16.092 16.13 3.50 2.41 0.20 Borucki(2011) Marcy(2014) 0,1
Kepler-131 c 25.517 8.25 5.90 0.84 0.07 Batalha(2013) Marcy(2014) 0,1
Kepler-406 b 2.426 4.71 1.70 1.43 0.03 Borucki(2011) Weiss(2014) 0,1
Kepler-406 c 4.623 1.53 2.30 0.85 0.03 Batalha(2013) Weiss(2014) 0,1
Kepler-407 b 0.669 0.06 1.20 1.07 0.02 Borucki(2011) Marcy(2014) 0,1
Kepler-409 b 68.958 2.69 6.20 1.19 0.03 Batalha(2013) Marcy(2014) 0,1
Kepler-4 b 3.213 24.47 3.81 4.00 0.21 Borucki(2010) Borucki(2010)
GJ 436 b 2.64 25.4 2.1 4.10 0.16 Butler(2004) Lanotte(2014)
Kepler-89 c 10.42 15.6 10.6 4.32 0.41 Batalha(2013) Weiss(2013)
HAT-P-11 b 4.888 25.74 2.86 4.73 0.157 Bakos(2010) Bakos(2010)
CoRoT-22 b 9.756 — 35 4.88 0.28 Moutou(2014) Moutou(2014) 4
Kepler-103 c 179.61 36.1 25.2 5.14 0.14 Borucki(2011) Marcy(2014)
Kepler-101 b 3.488 51.1 4.9 5.77 0.82 Borucki(2011) Bonomo(2014)
Kepler-63 b 9.43 — 95 6.1 0.2 Borucki(2011) Sanchis-Ojeda(2013b) 6
HAT-P-26 b 4.235 18.75 2.23 6.33 0.58 Hartman(2011) Hartman(2011)
CoRoT-8 b 6.212 69.92 9.53 6.39 0.22 Borde(2010) Borde(2010)
Kepler-89 e 54.32 35 23 6.56 0.62 Batalha(2013) Weiss(2013)
Kepler-11 b 10.304 1.90 1.2 1.80 0.04 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 c 13.024 2.90 2.3 2.87 0.06 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 d 22.684 7.30 1.2 3.12 0.07 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 f 46.689 2.00 0.9 2.49 0.06 Lissauer(2011) Lissauer(2013) 1,2
Kepler-11 g 118.38 — 25 3.33 0.07 Lissauer(2011) Lissauer(2013) 2,4
Kepler-18 b 3.505 6.9 3.4 2.00 0.100 Borucki(2011) Cochran(2011) 1,2
Kepler-30 b 29.334 11.3 1.4 3.90 0.200 Borucki(2011) Sanchis-Ojeda(2012) 1,2
Kepler-36 b 13.840 4.45 0.30 1.486 0.035 Carter(2012) Carter(2012) 1,2
Kepler-36 c 16.239 8.08 0.53 3.679 0.054 Borucki(2011) Carter(2012) 1,2
Kepler-79 b 13.485 10.9 6.7 3.47 0.07 Borucki(2011) Jontof-Hutter(2014) 1,2
Kepler-79 c 27.403 5.9 2.1 3.72 0.08 Borucki(2011) Jontof-Hutter(2014) 1,2
Kepler-79 e 81.066 4.1 1.2 3.49 0.14 Batalha(2013) Jontof-Hutter(2014) 1,2
Kepler-88 b 10.954 8.7 2.5 3.78 0.38 Borucki(2011) Nesvorny(2013) 2
Kepler-138 c 13.782 3.83 1.39 1.610 0.160 Borucki(2011) Kipping(2014) 2
Kepler-138 d 23.089 1.01 0.38 1.610 0.160 Borucki(2011) Kipping(2014) 2
Kepler-289 b 34.545 7.3 6.8 2.15 0.1 Borucki(2011) Schmitt(2014) 2
Kepler-289 d 66.063 4.0 0.9 2.68 0.17 Borucki(2011) Schmitt(2014) 2

Note. —
0. Included in baseline dataset, which consists of RV masses (see §3).

1. Mass, radius values and their error bars are unchanged (within rounding error) from WM14.

2. Mass measured by fitting the observed TTVs to N-body integrations of the system.

3. The Kepler-68 planets were repeated twice in the WM14 dataset, so we use the Marcy et al. (2014) values.

4. The σMobs column contains the 2σ upper limit as reported in the second reference.

5. Only a 1σ upper limit of 3.78 was given, and no posteriors were shown; in this analysis, we set the 2σ upper
limit at 9 M⊕ to include 1.8 m/s uncertainty quoted in RV semi-amplitude for the larger Kepler-101 b.

6. The 2σ upper limit is interpolated from given 1σ and 3σ upper limits.


